FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

New Coyote Trojan Targets 61 Brazilian Banks with Nim-Powered Attack

Sixty-one banking institutions, all of them originating from Brazil, are the target of a new banking trojan called Coyote. "This malware utilizes the Squirrel installer for distribution, leveraging Node.js and a relatively new multi-platform programming language called Nim as a loader to complete its infection," Russian cybersecurity firm Kaspersky said in a Thursday report. What

NodeStealer Malware Hijacking Facebook Business Accounts for Malicious Ads

Compromised Facebook business accounts are being used to run bogus ads that employ "revealing photos of young women" as lures to trick victims into downloading an updated version of a malware called NodeStealer. "Clicking on ads immediately downloads an archive containing a malicious .exe 'Photo Album' file which also drops a second executable written in .NET – this payload is in charge of

Nodesub - Command-Line Tool For Finding Subdomains In Bug Bounty Programs

By: Zion3R


Nodesub is a command-line tool for finding subdomains in bug bounty programs. It supports various subdomain enumeration techniques and provides flexible options for customization.


Features

  • Perform subdomain enumeration using CIDR notation (Support input list).
  • Perform subdomain enumeration using ASN (Support input list).
  • Perform subdomain enumeration using a list of domains.

Installation

To install Nodesub, use the following command:

npm install -g nodesub

NOTE:

  • Edit File ~/.config/nodesub/config.ini

Usage

nodesub -h

This will display help for the tool. Here are all the switches it supports.

Examples
  • Enumerate subdomains for a single domain:

     nodesub -u example.com
  • Enumerate subdomains for a list of domains from a file:

     nodesub -l domains.txt
  • Perform subdomain enumeration using CIDR:

    node nodesub.js -c 192.168.0.0/24 -o subdomains.txt

    node nodesub.js -c CIDR.txt -o subdomains.txt

  • Perform subdomain enumeration using ASN:

    node nodesub.js -a AS12345 -o subdomains.txt
    node nodesub.js -a ASN.txt -o subdomains.txt
  • Enable recursive subdomain enumeration and output the results to a JSON file:

     nodesub -u example.com -r -o output.json -f json

Output

The tool provides various output formats for the results, including:

  • Text (txt)
  • JSON (json)
  • CSV (csv)
  • PDF (pdf)

The output file contains the resolved subdomains, failed resolved subdomains, or all subdomains based on the options chosen.



Temcrypt - Evolutionary Encryption Framework Based On Scalable Complexity Over Time

By: Zion3R


The Next-gen Encryption

Try temcrypt on the Web →

temcrypt SDK

Focused on protecting highly sensitive data, temcrypt is an advanced multi-layer data evolutionary encryption mechanism that offers scalable complexity over time, and is resistant to common brute force attacks.

You can create your own applications, scripts and automations when deploying it.

Knowledge

Find out what temcrypt stands for, the features and inspiration that led me to create it and much more. READ THE KNOWLEDGE DOCUMENT. This is very important to you.


Compatibility

temcrypt is compatible with both Node.js v18 or major, and modern web browsers, allowing you to use it in various environments.

Getting Started

The only dependencies that temcrypt uses are crypto-js for handling encryption algorithms like AES-256, SHA-256 and some encoders and fs is used for file handling with Node.js

To use temcrypt, you need to have Node.js installed. Then, you can install temcrypt using npm:

npm install temcrypt

after that, import it in your code as follows:

const temcrypt = require("temcrypt");

Includes an auto-install feature for its dependencies, so you don't have to worry about installing them manually. Just run the temcrypt.js library and the dependencies will be installed automatically and then call it in your code, this was done to be portable:

node temcrypt.js

Alternatively, you can use temcrypt directly in the browser by including the following script tag:

<script src="temcrypt.js"></script>

or minified:

<script src="temcrypt.min.js"></script>

You can also call the library on your website or web application from a CDN:

<script src="https://cdn.jsdelivr.net/gh/jofpin/temcrypt/temcrypt.min.js"></script>

Usage

ENCRYPT & DECRYPT

temcrypt provides functions like encrypt and decrypt to securely protect and disclose your information.

Parameters

  • dataString (string): The string data to encrypt.
  • dataFiles (string): The file path to encrypt. Provide either dataString or dataFiles.
  • mainKey (string): The main key (private) for encryption.
  • extraBytes (number, optional): Additional bytes to add to the encryption. Is an optional parameter used in the temcrypt encryption process. It allows you to add extra bytes to the encrypted data, increasing the complexity of the encryption, which requires more processing power to decrypt. It also serves to make patterns lose by changing the weight of the encryption.

Returns

  • If successful:
    • status (boolean): true to indicate successful decryption.
    • hash (string): The unique hash generated for the legitimacy verify of the encrypted data.
    • dataString (string) or dataFiles: The decrypted string or the file path of the decrypted file, depending on the input.
    • updatedEncryptedData (string): The updated encrypted data after decryption. The updated encrypted data after decryption. Every time the encryption is decrypted, the output is updated, because the mainKey changes its order and the new date of last decryption is saved.
    • creationDate (string): The creation date of the encrypted data.
    • lastDecryptionDate (string): The date of the last successful decryption of the data.
  • If dataString is provided:
    • hash (string): The unique hash generated for the legitimacy verify of the encrypted data.
    • mainKey (string): The main key (private) used for encryption.
    • timeKey (string): The time key (private) of the encryption.
    • dataString (string): The encrypted string.
    • extraBytes (number, optional): The extra bytes used for encryption.
  • If dataFiles is provided:
    • hash (string): The unique hash generated for the legitimacy verify of the encrypted data.
    • mainKey (string): The main key used for encryption.
    • timeKey (string): The time key of the encryption.
    • dataFiles (string): The file path of the encrypted file.
    • extraBytes (number, optional): The extra bytes used for encryption.
  • If decryption fails:
    • status (boolean): false to indicate decryption failure.
    • error_code (number): An error code indicating the reason for decryption failure.
    • message (string): A descriptive error message explaining the decryption failure.

Here are some examples of how to use temcrypt. Please note that when encrypting, you must enter a key and save the hour and minute that you encrypted the information. To decrypt the information, you must use the same main key at the same hour and minute on subsequent days:

Encrypt a String

const dataToEncrypt = "Sensitive data";
const mainKey = "your_secret_key"; // Insert your custom key

const encryptedData = temcrypt.encrypt({
dataString: dataToEncrypt,
mainKey: mainKey
});

console.log(encryptedData);

Decrypt a String

const encryptedData = "..."; // Encrypted data obtained from the encryption process
const mainKey = "your_secret_key";

const decryptedData = temcrypt.decrypt({
dataString: encryptedData,
mainKey: mainKey
});

console.log(decryptedData);

Encrypt a File:

To encrypt a file using temcrypt, you can use the encrypt function with the dataFiles parameter. Here's an example of how to encrypt a file and obtain the encryption result:

const temcrypt = require("temcrypt");

const filePath = "path/test.txt";
const mainKey = "your_secret_key";

const result = temcrypt.encrypt({
dataFiles: filePath,
mainKey: mainKey,
extraBytes: 128 // Optional: Add 128 extra bytes
});

console.log(result);

In this example, replace 'test.txt' with the actual path to the file you want to encrypt and set 'your_secret_key' as the main key for the encryption. The result object will contain the encryption details, including the unique hash, main key, time key, and the file path of the encrypted file.

Decrypt a File:

To decrypt a file that was previously encrypted with temcrypt, you can use the decrypt function with the dataFiles parameter. Here's an example of how to decrypt a file and obtain the decryption result:

const temcrypt = require("temcrypt");

const filePath = "path/test.txt.trypt";
const mainKey = "your_secret_key";

const result = temcrypt.decrypt({
dataFiles: filePath,
mainKey: mainKey
});

console.log(result);

In this example, replace 'path/test.txt.trypt' with the actual path to the encrypted file, and set 'your_secret_key' as the main key for decryption. The result object will contain the decryption status and the decrypted data, if successful.

Remember to provide the correct main key used during encryption to successfully decrypt the file, at the exact same hour and minute that it was encrypted. If the main key is wrong or the file was tampered with or the time is wrong, the decryption status will be false and the decrypted data will not be available.


UTILS

temcrypt provides utils functions to perform additional operations beyond encryption and decryption. These utility functions are designed to enhance the functionality and usability.

Function List:

  1. changeKey: Change your encryption mainKey
  2. check: Check if the encryption belongs to temcrypt
  3. verify: Checks if a hash matches the legitimacy of the encrypted output.

Below, you can see the details and how to implement its uses.

Update MainKey:

The changeKey utility function allows you to change the mainKey used to encrypt the data while keeping the encrypted data intact. This is useful when you want to enhance the security of your encrypted data or update the mainKey periodically.

Parameters

  • dataFiles (optional): The path to the file that was encrypted using temcrypt.
  • dataString (optional): The encrypted string that was generated using temcrypt.
  • mainKey (string): The current mainKey used to encrypt the data.
  • newKey(string): The new mainKey that will replace the current mainKey.
const temcrypt = require("temcrypt");

const filePath = "test.txt.trypt";
const currentMainKey = "my_recent_secret_key";
const newMainKey = "new_recent_secret_key";

// Update mainKey for the encrypted file
const result = temcrypt.utils({
changeKey: {
dataFiles: filePath,
mainKey: currentMainKey,
newKey: newMainKey
}
});

console.log(result.message);

Check Data Integrity:

The check utility function allows you to verify the integrity of the data encrypted using temcrypt. It checks whether a file or a string is a valid temcrypt encrypted data.

Parameters

  • dataFiles (optional): The path to the file that you want to check.
  • dataString (optional): The encrypted string that you want to check.
const temcrypt = require("temcrypt");

const filePath = "test.txt.trypt";
const encryptedString = "..."; // Encrypted string generated by temcrypt

// Check the integrity of the encrypted File
const result = temcrypt.utils({
check: {
dataFiles: filePath
}
});

console.log(result.message);

// Check the integrity of the encrypted String
const result2 = temcrypt.utils({
check: {
dataString: encryptedString
}
});

console.log(result2.message);

Verify Hash:

The verify utility function allows you to verify the integrity of encrypted data using its hash value. Checks if the encrypted data output matches the provided hash value.

Parameters

  • hash (string): The hash value to verify against.
  • dataFiles (optional): The path to the file whose hash you want to verify.
  • dataString (optional): The encrypted string whose hash you want to verify.
const temcrypt = require("temcrypt");

const filePath = "test.txt.trypt";
const hashToVerify = "..."; // The hash value to verify

// Verify the hash of the encrypted File
const result = temcrypt.utils({
verify: {
hash: hashToVerify,
dataFiles: filePath
}
});

console.log(result.message);

// Verify the hash of the encrypted String
const result2 = temcrypt.utils({
verify: {
hash: hashToVerify,
dataString: encryptedString
}
});

console.log(result2.message);

Error Codes

The following table presents the important error codes and their corresponding error messages used by temcrypt to indicate various error scenarios.

Code Error Message Description
420 Decryption time limit exceeded The decryption process took longer than the allowed time limit.
444 Decryption failed The decryption process encountered an error.
777 No data provided No data was provided for the operation.
859 Invalid temcrypt encrypted string The provided string is not a valid temcrypt encrypted string.

Examples

Check out the examples directory for more detailed usage examples.

WARNING

The encryption size of a string or file should be less than 16 KB (kilobytes). If it's larger, you must have enough computational power to decrypt it. Otherwise, your personal computer will exceed the time required to find the correct main key combination and proper encryption formation, and it won't be able to decrypt the information.

TIPS

  1. With temcrypt you can only decrypt your information in later days with the key that you entered at the same hour and minute that you encrypted.
  2. Focus on time, it is recommended to start the decryption between the first 2 to 10 seconds, so you have an advantage to generate the correct key formation.

License

The content of this project itself is licensed under the Creative Commons Attribution 3.0 license, and the underlying source code used to format and display that content is licensed under the MIT license.

Copyright (c) 2023 by Jose Pino



Node.js Users Beware: Manifest Confusion Attack Opens Door to Malware

The npm registry for the Node.js JavaScript runtime environment is susceptible to what's called a manifest confusion attack that could potentially allow threat actors to conceal malware in project dependencies or perform arbitrary script execution during installation. "A npm package's manifest is published independently from its tarball," Darcy Clarke, a former GitHub and npm engineering manager

Developer Alert: NPM Packages for Node.js Hiding Dangerous TurkoRat Malware

Two malicious packages discovered in the npm package repository have been found to conceal an open source information stealer malware called TurkoRat. The packages – named nodejs-encrypt-agent and nodejs-cookie-proxy-agent – were collectively downloaded approximately 1,200 times and were available for more than two months before they were identified and taken down. ReversingLabs, which broke

Autobloody - Tool To Automatically Exploit Active Directory Privilege Escalation Paths Shown By BloodHound


autobloody is a tool to automatically exploit Active Directory privilege escalation paths shown by BloodHound.

Description

This tool automates the AD privesc between two AD objects, the source (the one we own) and the target (the one we want) if a privesc path exists in BloodHound database. The automation is composed of two steps:

  • Finding the optimal path for privesc using bloodhound data and neo4j queries.
  • Execute the path found using bloodyAD package

Because autobloody relies on bloodyAD, it supports authentication using cleartext passwords, pass-the-hash, pass-the-ticket or certificates and binds to LDAP services of a domain controller to perform AD privesc.


Installation

First if you run it on Linux, you must have libkrb5-dev installed on your OS in order for kerberos to work:

# Debian/Ubuntu/Kali
apt-get install libkrb5-dev

# Centos/RHEL
yum install krb5-devel

# Fedora
dnf install krb5-devel

# Arch Linux
pacman -S krb5

A python package is available:

pip install autobloody

Or you can clone the repo:

git clone --depth 1 https://github.com/CravateRouge/autobloody
pip install .

Dependencies

  • bloodyAD
  • Neo4j python driver
  • Neo4j with the GDS library
  • BloodHound
  • Python 3
  • Gssapi (linux) or Winkerberos (Windows)

How to use it

First data must be imported into BloodHound (e.g using SharpHound or BloodHound.py) and Neo4j must be running.

⚠️
-ds and -dt values are case sensitive

Simple usage:

autobloody -u john.doe -p 'Password123!' --host 192.168.10.2 -dp 'neo4jP@ss' -ds 'JOHN.DOE@BLOODY.LOCAL' -dt 'BLOODY.LOCAL'

Full help:

[bloodyAD]$ ./autobloody.py -h
usage: autobloody.py [-h] [--dburi DBURI] [-du DBUSER] -dp DBPASSWORD -ds DBSOURCE -dt DBTARGET [-d DOMAIN] [-u USERNAME] [-p PASSWORD] [-k] [-c CERTIFICATE] [-s] --host HOST

AD Privesc Automation

options:
-h, --help show this help message and exit
--dburi DBURI The host neo4j is running on (default is "bolt://localhost:7687")
-du DBUSER, --dbuser DBUSER
Neo4j username to use (default is "neo4j")
-dp DBPASSWORD, --dbpassword DBPASSWORD
Neo4j password to use
-ds DBSOURCE, --dbsource DBSOURCE
Case sensitive label of the source node (name property in bloodhound)
-dt DBTARGET, --dbtarget DBTARGET
Case sensitive label of the target node (name property in bloodhound)
-d DOMAIN, --domain DOMAIN
Domain used for NTLM authentication
-u USERNAME, --username USERNAME
Username used for NTLM authentication
-p PASSWORD, --password PASSWORD
Cleartext password or LMHASH:NTHASH for NTLM authentication
-k, --kerberos
-c CERTIFICATE, --certificate CERTIFICATE
Certificate authentication, e.g: "path/to/key:path/to/cert"
-s, --secure Try to use LDAP over TLS aka LDAPS (default is LDAP)
--host HOST Hostname or IP of the DC (ex: my.dc.local or 172.16.1.3)

How it works

First a privesc path is found using the Dijkstra's algorithm implemented into the Neo4j's GDS library. The Dijkstra's algorithm allows to solve the shortest path problem on a weighted graph. By default the edges created by BloodHound don't have weight but a type (e.g MemberOf, WriteOwner). A weight is then added to each edge accordingly to the type of edge and the type of node reached (e.g user,group,domain).

Once a path is generated, autobloody will connect to the DC and execute the path and clean what is reversible (everything except ForcePasswordChange and setOwner).

Limitations

For now, only the following BloodHound edges are currently supported for automatic exploitation:

  • MemberOf
  • ForceChangePassword
  • AddMembers
  • AddSelf
  • DCSync
  • GetChanges/GetChangesAll
  • GenericAll
  • WriteDacl
  • GenericWrite
  • WriteOwner
  • Owns
  • Contains
  • AllExtendedRights


Jscythe - Abuse The Node.Js Inspector Mechanism In Order To Force Any Node.Js/Electron/V8 Based Process To Execute Arbitrary Javascript Code


jscythe abuses the node.js inspector mechanism in order to force any node.js/electron/v8 based process to execute arbitrary javascript code, even if their debugging capabilities are disabled.

Tested and working against Visual Studio Code, Discord, any Node.js application and more!

How

  1. Locate the target process.
  2. Send SIGUSR1 signal to the process, this will enable the debugger on a port (depending on the software, sometimes it's random, sometimes it's not).
  3. Determine debugging port by diffing open ports before and after sending SIGUSR1.
  4. Get the websocket debugging URL and session id from http://localhost:<port>/json.
  5. Send a Runtime.evaluate request with the provided code.
  6. Profit.

Building

cargo build --release

Running

Target a specific process and execute a basic expression:

./target/debug/jscythe --pid 666 --code "5 - 3 + 2"

Execute code from a file:

./target/debug/jscythe --pid 666 --script example_script.js

The example_script.js can require any node module and execute any code, like:

require('child_process').spawnSync('/System/Applications/Calculator.app/Contents/MacOS/Calculator', { encoding : 'utf8' }).stdout

Search process by expression:

./target/debug/jscythe --search extensionHost --script example_script.js

Other options

Run jscythe --help for the complete list of options.

License

This project is made with ♥ by @evilsocket and it is released under the GPL3 license.


“Downthem” DDoS-for-Hire Boss Gets 2 Years in Prison

A 33-year-old Illinois man was sentenced to two years in prison today following his conviction last year for operating services that allowed paying customers to launch powerful distributed denial-of-service (DDoS) attacks against hundreds of thousands of Internet users and websites.

The user interface for Downthem[.]org.

Matthew Gatrel of St. Charles, Ill. was found guilty for violations of the Computer Fraud and Abuse Act (CFAA) related to his operation of downthem[.]org and ampnode[.]com, two DDoS-for-hire services that had thousands of customers who paid to launch more than 200,000 attacks.

Despite admitting to FBI agents that he ran these so-called “booter” services (and turning over plenty of incriminating evidence in the process), Gatrel opted to take his case to trial, defended the entire time by public defenders. Gatrel’s co-defendant and partner in the business, Juan “Severon” Martinez of Pasadena, Calif., pleaded guilty just before the trial.

After a nine-day trial in the Central District of California, Gatrel was convicted on all three counts, including conspiracy to commit unauthorized impairment of a protected computer, conspiracy to commit wire fraud, and unauthorized impairment of a protected computer.

Prosecutors said Downthem sold subscriptions allowing customers to launch DDoS attacks, while AmpNode provided “bulletproof” server hosting to customers — with an emphasis on “spoofing” servers that could be pre-configured with DDoS attack scripts and lists of vulnerable “attack amplifiers” used to launch simultaneous cyberattacks on victims.

Booter and stresser services let customers pick from among a variety of attack methods, but almost universally the most powerful of these methods involves what’s known as a “reflective amplification attack.” In such assaults, the perpetrators leverage unmanaged Domain Name Servers (DNS) or other devices on the Web to create huge traffic floods.

Ideally, DNS servers only provide services to machines within a trusted domain — such as translating an Internet address from a series of numbers into a domain name, like example.com. But DNS reflection attacks rely on consumer and business routers and other devices equipped with DNS servers that are (mis)configured to accept queries from anywhere on the Web.

Attackers can send spoofed DNS queries to these DNS servers, forging the request so that it appears to come from the target’s network. That way, when the DNS servers respond, they reply to the spoofed (target) address.

The bad guys also can amplify a reflective attack by crafting DNS queries so that the responses are much bigger than the requests. For example, an attacker could compose a DNS request of less than 100 bytes, prompting a response that is 60-70 times as large. This “amplification” effect is especially pronounced if the perpetrators query dozens of DNS servers with these spoofed requests simultaneously.

The government charged that Gatrel and Martinez constantly scanned the Internet for these misconfigured devices, and then sold lists of Internet addresses tied to these devices to other booter service operators.

“Gatrel ran a criminal enterprise designed around launching hundreds of thousands of cyber-attacks on behalf of hundreds of customers,” prosecutors wrote in a memorandum submitted in advance of his sentencing. “He also provided infrastructure and resources for other cybercriminals to run their own businesses launching these same kinds of attacks. These attacks victimized wide swaths of American society and compromised computers around the world.”

The U.S. and United Kingdom have been trying to impress on would-be customers of these booter services that hiring them for DDoS attacks is illegal. The U.K. has even taken out Google ads to remind U.K. residents when they search online for terms common to booter services.

The case against Gatrel and Martinez was brought as part of a widespread crackdown on booter services in 2018, when the FBI joined law enforcement partners overseas to seize 15 different booter service domains.

Those actions have prompted a flurry of prosecutions, with wildly varying sentences when the booter service owners are invariably found guilty. However, DDoS experts say booter and stresser services that remain in operation continue to account for the vast majority of DDoS attacks launched daily around the globe.

❌